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An Indoor Environment Sensing and Localization
System via mmWave Phased Array
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Abstract—In this paper, an indoor layout sensing and
localization system with testbed in the 60-GHz millimeter
wave (mmWave) band, named mmReality, is elaborated.
The mmReality system consists of one transmitter and
one mobile receiver, both with a phased array and a single
radio frequency (RF) chain. To reconstruct the room
layout, the pilot signal is delivered from the transmitter
to the receiver via different pairs of transmission and
receiving beams, so that multipath signals in all direc-
tions can be captured. Then spatial smoothing and the
two-dimensional multiple signal classification (MUSIC)
algorithm are applied to detect the angle-of-departures
(AoDs) and angle-of-arrivals (AoAs) of propagation
paths. Moreover, the technique of multi-carrier ranging
is adopted to measure the path lengths. Therefore, with
the measurements of the receiver in different locations
of the room, the receiver and virtual transmitters can be
pinpointed to reconstruct the room layout. Experiments
show that the reconstructed room layout can be utilized to
localize a mobile device via the AoA spectrum.
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I. INTRODUCTION

Millimeter wave (mmWave) communications have been
one of the key technologies of next-generation wire-

less networks. Despite the large bandwidth, high propaga-
tion attenuation and reflection loss of mmWave signals are the
drawbacks from the communication point of view. However,
these drawbacks may favor the wireless sensing performance
by degrading the interference. Hence, it is of interest to ex-
ploit the sensing capability of the mmWave communication
system, such that the link reliability can be improved. For ex-
ample, with the location knowledge of reflectors and mobile
devices, the mmWave link can be quickly recovered if link
blockage occurs.

There have been a few testbeds in the existing literature
designated to detect the room layout via mmWave transceiver.
For example in Ref. [1], co-located mmWave transmitter and
receiver were deployed at a mobile platform to detect the lay-
out of a corridor along a planned trajectory. In Ref. [2], an
mmWave indoor mapping system with co-located transceiver
was proposed, which utilized orthogonal frequency divi-
sion multiplexing (OFDM) radar processing to obtain sparse
range-angle charts. However, the above designs may not be
applicable in a wireless communication system, where the
signal transmitter and receiver are separated. Moreover, the
self-interference cancellation for co-located transmitter and
receiver is still challenging in communication systems. It was
shown in Ref. [3] that indoor ambient reflectors can be de-
tected via the mmWave transmitter and receiver, where the
transmitter is fixed and the receiver receives signals at multi-
ple locations. In this testbed, an omnidirectional antenna on
a rotation platform is used to simulate an antenna array, such
that angle-of-departures (AoDs) and angle-of-arrivals (AoAs)
of the propagation paths can be estimated. Moreover, based on
the detected layout, the distribution of the signal to noise ratio
(SNR) in the room (radio map) is also predictable. However,
it is more practical to use the phased array in mmWave com-
munication systems, where imperfect antenna elements in the
phased array may degrade the estimation accuracy of AoDs
and AoAs.

To quickly recover mmWave communications from link
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blockage, it is necessary for the access point (AP) to know
both the room layout and the location of the mobile device.
The localization methods in the existing literature can be clas-
sified into four categories, namely fingerprint-based local-
ization, angle-based localization, time-of-flight-based (ToF-
based) localization, and multipath-based localization, which
are elaborated below.

Fingerprint-based localization: Localization based on
fingerprints of received signal strength indicator (RSSI)[4,5]

and channel state information (CSI)[6] has been well investi-
gated in sub-6-GHz Wi-Fi networks. For example, RADAR[4]

implemented a fingerprint-based localization system based on
an offline RSSI database. In Ref. [5], a probabilistic method
was proposed to improve RSSI-fingerprint-based localization.
DeepFi[6] adopted CSI as the fingerprint for deep-learning-
based indoor localization. In the mmWave band, instead of
using fine-grained CSI or coarse-grained RSSI as the finger-
print, mid-grained beam SNR was chosen as the fingerprint in
Ref. [7]. However, the fingerprint-based localization method
is vulnerable to a rich multipath environment. Moreover,
since the fingerprints should be updated when the environ-
ment changes, collecting fingerprints at many locations could
be labor-intensive.

Angle-based localization: The AoDs and AoAs of mul-
tipath can be estimated by the multiple signal classification
(MUSIC) algorithm when the devices are equipped with an-
tenna arrays. In Ref. [8], ArrayTrack estimated the AoA spec-
tra of multiple APs from the uplink signals of the device and
then generated the localization likelihood heatmap. SpotFi[9]

utilized the AoA estimated by MUSIC algorithm and ToF es-
timated from OFDM subcarriers of direct paths to localize
the target with three-antenna APs. Phaser[10] addressed the
practical problems of AoA-based localization such as auto-
calibration and multi-AP synchronization in commodity Wi-
Fi APs. However, these angle-based localization systems re-
quired multiple APs. Moreover, they applied MUSIC-based
algorithms on digital multi-input multi-output (MIMO) archi-
tecture, while the analog MIMO architecture is widely used
in mmWave systems. The angle estimation methods used
in these sub-6-GHz systems cannot be directly applied to
mmWave systems.

ToF-based localization: Chronos[11] estimated accurate
ToFs of multipath by hopping between different bands.
Then ToF of the line-of-sight (LoS) path was distinguished
from non-line-of-sight (NLoS) paths for accurate localization.
However, such frequency hopping will degrade the through-
puts of other devices. ToneTrack[12] proposed a spectrum
identification algorithm to discard NLoS measurement. It re-
quested time synchronization between the transmitter and the
receiver for accurate ToF estimation, and the LoS path was re-
quired for high-accuracy localization. However, the localiza-
tion error might be significant when applying the ToF-based

method in mmWave communication systems. This is because
of the severe and time-varying carrier frequency offset be-
tween the transmitter and the receiver.

Multipath-based localization: Angle-based and ToF-
based localization methods generally request multiple APs for
triangular and trilateral localization. In Ref. [13], the authors
combined the azimuth angles and relative ToFs of multipaths
of a single AP for localization. MonoLoco[14] proposed a mul-
tipath triangulation method to achieve decimeter-level Wi-Fi
localization with a single AP. However, these methods still
suffer from the frequency offset as the ToF-based localization
in the mmWave band. As a result, the existing localization
methods for sub-6-GHz systems may not be directly appli-
cable to mmWave systems. Furthermore, although the room
layout and device location are strongly related, there is no ex-
isting work integrating the layout reconstruction and localiza-
tion in mmWave communication systems.

In this paper, an indoor sensing and localization system
working at 60 GHz, namely mmReality, is proposed. The
mmReality consists of one transmitter and one receiver, each
with one phased array. The system works in two stages,
namely the layout reconstruction stage and the localization
stage. In the first stage, the AoAs, AoDs, and lengths of
the propagation paths between the transmitter and the receiver
are estimated, where the receiver is put in multiple positions.
Based on the above geometric parameters, the walls of the
room can be detected to reconstruct the layout. In the sec-
ond stage, the AoA spectrum for each indoor position can be
predicted via the room layout, and the position of a mobile
device can be detected by comparing its AoA spectrum with
the prediction.

The remainder of this paper is organized as follows. In sec-
tion II, the architecture of the mmReality is introduced. In sec-
tion III, the estimation methods for AoAs, AoDs, and lengths
of propagation paths are elaborated, and the algorithms for
layout reconstruction are elaborated in section IV. Then sec-
tion V describes the localization method based on room layout
and AoA spectrum. Finally, the experimental results are illus-
trated in section VI and the conclusion is drawn in section VII.

II. SYSTEM OVERVIEW

The proposed mmReality system consists of one transmit-
ter at a fixed location in a room and one mobile receiver, each
with a single radio frequency (RF) chain and a phased array
working at 60 GHz. There are NT transmit antenna elements
(TAEs) and NR receive antenna elements (RAEs) in the phased
arrays of the transmitter and receiver, respectively. The prop-
agation paths from the transmitter to the receiver, including
the LoS and NLoS paths, are illustrated in Fig. 1, where the
specular reflections via walls dominate the NLoS paths. By
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Fig. 1 Illustration of propagation channel between the transmitter and the
receiver, where the transmitter is fixed and a virtual transmitter can be ob-
served by the receiver due to the specular reflection of the wall

measuring the multi-carrier pilot signals with the phased ar-
ray, the transmitter and receiver can cooperatively estimate the
AoDs, AoAs, and lengths of propagation paths. Hence, the
relative locations of the main reflectors (e.g., walls) and the
mobile receiver with respect to the transmitter can be detected
via geometric relations. The receiver moves according to the
planned trajectory in the room so that a complete room lay-
out can be reconstructed. In practice, the transmitter can also
communicate with multiple receivers at different locations in
the room to complete the layout detection. In the following
section III, we first introduce how to estimate AoDs, AoAs,
and path lengths, then the layout reconstruction algorithm will
be elaborated in section IV.

III. ESTIMATION OF AOD, AOA,
AND PATH LENGTH

A. Joint AoD and AoA Estimation
The detection of AoD and AoA is challenging with ana-

log MIMO architecture. For example, the exhaustive beam
search used in Ref. [2] is with high estimation overhead and
low angular resolution. Although there has been a significant
amount of research efforts spent on angle detection in multi-
antenna systems, e.g., MUSIC algorithm and estimating sig-
nal parameter via rotational invariance techniques (ESPRIT)
algorithm, they are designed for digital MIMO systems, where
the signals at all the antenna elements can be sampled individ-
ually. Notice that in the scenario of sensing a room layout, the
main reflectors (e.g., walls) are static. Therefore, the mmWave
channel can be treated as quasi-static during multiple trans-
missions. This has been verified and utilized in Ref. [3] for
AoD and AoA detection with a single rotating antenna. In
this paper, exploiting this phenomenon, the transmitter can
duplicate pilot transmissions via the same transmission beams

while the receiver adopts different receiving beams to resolve
the individual signal on each RAE.

Specifically, the pilot signal s[t] (t=1,2, · · · ,NS) is period-
ically transmitted via NT different analog precoders, namely
{f1,f2, · · · ,fNT}, where NS is the number of symbols in the
transmission signal. For each analog precoder, the signal s[t]
is transmitted NR times, while NR different analog combiners
are used at the receiver, namely {w1,w2, · · · ,wNR}. For the
elaboration convenience, we refer to the transmission with the
ith precoder and jth combiner as the (i, j)th transmission. The
received signal of the (i, j)th transmission can be expressed as

ỹi, j[t] = wH
j Hfis[t]+n[t] = (1)

wH
j S[t]fi +n[t], (2)

where wH
j denotes the conjugate transpose of the jth combiner

w j, H denotes the channel matrix, n[t] denotes the additive
white Gaussian noise, and

S[t] =Hs[t] ∈ CNR×NT (3)

denotes the TAE-to-RAE signal matrix. Aggregating the
transmissions via all the precoder and combiner pairs, we have

Ỹ [t] =WHS[t]F +N [t], (4)

where the (i, j)th entry of matrix Ỹ [t] is the received signal
when applying the ith precoder and the jth combiner ỹi, j[t],
F = [f1,f2, · · · ,fNT ], W = [w1,w2, · · · ,wNR ], and N [t] is
the aggregation of noise in all the transmissions. Applying the
unitary beamforming matrix proposed in Ref. [15], we have
FHF = I and WHW = I . As a result, the signal matrix S[t]
can be estimated from received signals Ỹ (t) by

Ŝ[t] =WỸ [t]FH, (5)

where Ŝ[t] denotes the estimation of S[t].
Two-dimensional-MUSIC (2D-MUSIC) algorithm with

spatial smoothing is used for AoD and AoA estimation from
Ŝ[t]. Although the spatial smoothing may lose some degree
of freedom in the angle detection, it significantly suppresses
the detection error due to source correlation[16]. In order to
proceed the spatial smoothing with subarray sizes N′

T and N′
R

at the transmitter and receiver respectively, we first define
Ŝi, j[t] as the submatrix of S[t] by extracting the entries from
the ith row to (i + N′

T − 1)th row and from the jth column
to ( j +N′

R − 1)th column, and ŝi, j
v [t] as the vectorization of

Ŝi, j[t]. Hence, the covariance matrix of ŝi, j
v [t] is given by

R̂i, j =
1
T

T

∑
t=1

ŝi, j
v [t]

[
ŝi, j

v [t]
]H

, (6)

where [ŝi, j
v [t]]H denotes the conjugate transpose of ŝi, j

v [t].
Then the spatially smoothed covariance matrix is defined as
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the average covariance matrix of each subarray,

R̂ss =
1

MTMR

MT

∑
i=1

MR

∑
j=1

R̂i, j, (7)

where MT = NT−N′
T+1 and MR = NR−N′

R+1. With the es-
timated path number K, R̂ss is further decomposed via eigen-
value decomposition as

R̂ss =EsDsE
H
s +EnDnE

H
n , (8)

where Ds and Dn are diagonal matrices whose diagonal en-
tries are the K largest and the (N′

TN′
R −K) smallest eigenval-

ues of R̂ss, respectively; Es and En are matrices composed of
the eigenvectors of R̂ss correspondingly.

As a result, the 2D-MUSIC spatial spectrum function is
given by

f (φ ,θ) =
1

[aR(φ)⊗aT(θ)]HEnEH
n [aR(φ)⊗aT(θ)]

, (9)

where ⊗ denotes the Kronecker product,

aT(θ) =

[
1,e−j2π d sinθ

λ , · · · ,e−j2π
(N′

T−1)d sinθ

λ

]T

,

aR(φ) =

[
1,e−j2π d sinφ

λ , · · · ,e−j2π
(N′

R−1)d sinφ

λ

]T

(10)

denote the transmission and receiving array response vectors,
respectively. d, λ , and xT denote the inter-element spacing,
the wavelength, and the transpose of vector x, respectively.
The K highest peaks of f (φ ,θ) refer to the estimated AoDs
and AoAs of the propagation paths.

B. Path Length Estimation
With the knowledge of AoDs and AoAs of propagation

paths, signals from different paths can be separated from Ŝ[t]
via the transmission and receiving beamforming, so that the
length of each path can be estimated individually. Specifically,
the path length estimation of the ith path, whose AoD and
AoA are denoted as θi and φi respectively, is elaborated below.
Let AT,i be the aggregation of transmission array response
vectors of all AoDs with its first column as a(φi), AR,i be the
aggregation of receiving array response vectors of all AoAs
with its first column as a(θi), eT,1 = [1,0, · · · ,0]T ∈ {0,1}NT

and eR,1 = [1,0, · · · ,0]T ∈ {0,1}NR , the transmission and the
receiving beamforming vectors for the ith path are given by

anull
T,i = (AT,iA

H
T,i)

−1AT,ieT,1, (11)

and
anull

R,i = (AR,iA
H
R,i)

−1AR,ieR,1, (12)

respectively. The received signal of the ith path can be esti-
mated as

si[t] = anull
R,i S(t)(a

null
T,i )

H. (13)

OFDM ranging, also called multi-carrier ranging[11], is ap-
plied on si[t] to estimate the length of the ith path. In the
OFDM system, signals are modulated to subcarriers with dif-
ferent frequencies for transmission. For the same distance, the
phases of the received signals of all subcarriers are different,
which can be exploited to estimate the path lengths. We select
equally-separated subcarriers for ranging. Without the consid-
eration of sampling frequency offset (SFO) and packet detect
delay, the estimated path length can be represented by

d⋆ = argmax
d

∣∣∣∣∣ L

∑
i=1

exp
(

j
(

ϕi −
2π fid

c

))∣∣∣∣∣ , (14)

where ϕi is the phase of the ith subcarrier, 2π fid
c denotes the

range-dependent phase offset of the ith subcarrier, fi denotes
the frequency of the ith subcarrier, c denotes the speed of light,
and L is the number of subcarriers. As a remark notice that,
when d equals the ground truth, the range-dependent phase
offsets of all subcarriers will be equal, i.e., their complex ex-
ponentials are in-phase.

In practice, however, the SFO and packet detect delay are
not negligible[17]. As in Ref. [3], a reference calibration
scheme can be used to address this issue. Suppose the mea-
sured phase is ϕi,ref for the ith subcarrier at a known distance
d0, (14) can be reformulated as

d⋆ = argmax
d

∣∣∣∣∣ L

∑
i=1

exp
(

j
(

ϕi −ϕi,ref −
2π fi(d −d0)

c

))∣∣∣∣∣ .
(15)

IV. RECONSTRUCTION OF ROOM LAYOUT

With the technique introduced in the previous section, the
geometrical parameters of propagation paths, including AoAs,
AoDs, and path lengths, can be estimated. In this section,
following the method introduced in Ref. [3], we first localize
the mobile receiver in each measurement (referred to as the
measurement points) and then reconstruct the room layout.

A. Localization of Measurement Points
Since the magnetometer has been widely adopted in mobile

devices, it is assumed that both the transmitter and receiver are
able to share the same direction as the reference direction of
AoA and AoD measurements. Moreover, the estimated geo-
metrical parameters of paths are reported to the transmitter for
the layout reconstruction. For the elaboration convenience, we
treat the position of the transmitter as the origin of the coordi-
nate system, define prx

i as the coordinates of the ith measure-
ment point, pref

i,ℓ as the coordinates of the reflection point of
ℓth path at the ith measurement point. Moreover, tracing back
the AoA of one NLoS path (say the ℓth path) from the ith
measurement point, the receiver can find the mirror position
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Fig. 2 Localization of a measurement point, where vTx refers to the virtual
transmitter

of the transmitter (virtual transmitter[3]) with respect to a wall
as illustrated in Fig. 1, which is denoted as pvtx

i,ℓ . For the elab-
oration convenience, we refer to the abovementioned mirror
of transmitters as virtual transmitters. Suppose that there are
L paths found at the ith measurement point prx

i , and the esti-
mated AoA, AoD, and distance of the ℓth path (ℓ= 1,2, · · · ,L)
are (θ̂i,ℓ, φ̂i,ℓ, r̂i,ℓ). The detection of prx

i , denoted by p̂rx
i is elab-

orated below.
It can be proved that, without estimation error, the

measurement point must be on the line segment with its
two endpoints represented by (r̂i,ℓ cos θ̂i,ℓ, r̂i,ℓ sin θ̂i,ℓ) and
(−r̂i,ℓ cos φ̂i,ℓ,−r̂i,ℓ sin φ̂i,ℓ), (ℓ = 1,2, · · · ,L). An example
is illustrated in Fig. 2, where the measurement point P1
is on the line segment connecting (r̂1,1 cos θ̂1,1, r̂1,1 sin θ̂1,1)

and (−r̂1,1 cos φ̂1,1,−r̂1,1 sin φ̂1,1), which are marked in red.
Hence, as long as more than one path is detected in P1, its
location can be estimated from the intersection points of cor-
responding line segments. In practice, due to the measurement
error, the intersection points are not unique, then the measure-
ment point can be estimated by finding a point p̂rx

i = (x̂rx
i , ŷ

rx
i )

minimizing the sum distance to the line segments specified by
all paths[3].

After pinpointing a measurement point, the estimated re-
flection points of the ℓth path (ℓ = 1,2, · · · ,L), denoted as
p̂ref

i,ℓ = (x̂ref
i,ℓ , ŷ

ref
i,ℓ ), can be calculated via the following equation

system 
x̂ref

i,ℓ

ŷref
i,ℓ

= tan θ̂i,ℓ,

x̂ref
i,ℓ − x̂rx

i

ŷref
i,ℓ − ŷrx

i
= tan φ̂i,ℓ.

(16)

Moreover, the mirror position of the transmitter along the ℓth
path at the ith measurement point can be estimated by

p̂vtx
i,ℓ = p̂rx

i + r̂i,ℓ

[
cos φ̂i,ℓ,sin φ̂i,ℓ

]T
. (17)

As illustrated in the example of Fig. 2, there are three virtual
transmitters from the P1 point of view. As a remark notice
that the positions of virtual transmitters depend only on the
position of the transmitter and the layout of walls, and hence,
the receiver should see the same set of virtual transmitters at
different measurement points.

B. Layout Reconstruction
It can be observed from Fig. 2 that, after the localization

of virtual transmitters, the wall can be detected by drawing
the perpendicular bisector between the transmitter and each
virtual transmitter. To obtain the complete room layout, we
can move the receiver and take measurements in a number of
points, so that the virtual transmitters with respect to all the
walls can be captured.

In real measurement, there are still two issues with the
above reconstruction method. First, due to the measurement
error, the estimated locations of one virtual transmitter de-
tected at different measurement points may not be identical.
Moreover, in addition to the first-order path (the path with one
reflection from the transmitter to the receiver), some higher-
order paths (the path with more than one reflection) may also
be detected. As a result, the detected locations of virtual
transmitters may be dispersed. To classify the estimated po-
sitions of virtual transmitters corresponding to the same wall,
we use density-based spatial clustering of applications with
noise (DBSCAN) method[18] and take the cluster centroid as
the estimated position of the virtual transmitter.

Finally, for some complicated room layouts, there is more
than one possible room layout given the locations of virtual
transmitters. One example is illustrated in Fig. 3, where there
are two possible layouts given the same locations of 6 virtual
transmitters. This ambiguity can be removed by exploiting the
locations of reflection points derived in (16). For example, in
Fig. 3, if A and B are the reflection points of NLoS paths from
vTx2 and vTx3 to the receivers respectively, then the room
profile is shown in Fig. 3(a). Otherwise, if A′ and B′ are the
reflection points, the room profile is shown in Fig. 3(b).

V. LOCALIZATION BY AOA SPECTRUM

In this section, the fast localization method for mobile re-
ceivers via AoA spectrum and reconstructed indoor layout is
explained. Although the method introduced in section IV.A
can be used to localize the receiver, the overhead is signifi-
cant. First, the transmitter should deliver pilots dedicatedly to
the receiver for at least NTNR times, such that the AoA and
AoD can be estimated with high resolution. However, this
estimation method may not be feasible when the channel is
not quasi-static, e.g., there are moving persons in the room.
Second, the offset between their local oscillators should be
carefully calibrated to suppress the estimation error of path
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Fig. 3 Two possible layouts with the same virtual transmitter positions due
to layout ambiguity: (a) Layout with reflection points A and B; (b) Layout
with reflection points A′ and B′

length. The cost of oscillator synchronization could be high,
especially in the mmWave band.

In practice, the transmitter (i.e., the AP) would periodically
broadcast control information to all directions, so that each re-
ceiver can detect all the potential AoAs of the signals from the
transmitter via periodic beam search. Hence, raw AoA estima-
tion can be made by the receiver. By matching the observed
dominant AoAs with the locations in the reconstructed room
layout, the mobile receiver can be pinpointed. This facilitates
localization without dedicated signaling overhead. The exist-
ing works exploiting the AoA spectrum (including the AoAs
and signal powers at the arrival directions) in localization usu-
ally rely on multiple APs. Compared with the existing works
in sub-6-GHz, we shall show single transmitter might be suf-
ficient to generate the AoA spectrum for localization in the
mmWave band, with the assistance of virtual transmitters. The
reasons are elaborated on below. First, it is shown by exper-
iments that the propagation paths arrived at the receiver are
dominated by the LoS and first-order NLoS paths, leading to
the limited number of virtual transmitters. Second, the phased
array at the mmWave band is of smaller size, so that it can be
implemented on mobile devices, and used to resolve the real
and virtual transmitters in different directions.

Specifically, we choose |G | positions as the possible po-
sition in the reconstructed room layout, denoted as G =

{1,2, · · · , |G |}. In practice, the set of the feasible positions
G can be generated by mesh grids. Then the expected AoA

spectra at all positions in G is calculated according to the po-
sitions of the transmitter and virtual transmitters. Let Φi =

{φi, j| j = 1,2, · · ·} be the set of AoAs for the position i, and Φ̂

be the set of AoAs observed at the real receiver. We define the
error function of an expected AoA profile with respect to the
measured one as

f (Φi,Φ̂) =
|Φi|

∑
j=1

min
({

|φi, j − φ̂k|2
∣∣∣k},A2

th

)
, (18)

where Ath is a constant threshold, and |Φi| denotes the car-
dinality of the set Φi. Then the estimated position with the
measured AoA profile Φ̂ can be obtained by finding the po-
sition with the smallest value of the error function out of all
feasible positions in the reconstructed layout.

i⋆ = argmin
i∈G

f (Φi,Φ̂). (19)

As a remark notice that the threshold Ath in (18) is to avoid a
significant difference in the error function when the desired
LoS and first-order reflection paths are blocked, or higher-
order reflection paths are captured in the AoA detection.

VI. EXPERIMENT AND DISCUSSION

A. mmReality System Implementation
The block diagram of mmReality is illustrated in Fig. 4.

Taking the transmitter side as an example, one software-
defined radio (SDR) generates the baseband signal and up-
converts it to the intermediate frequency (IF) band centered at
500 MHz. The IF signal is fed into 90◦ and 180◦ power split-
ters sequentially to generate differential in-phase and quadra-
ture (IQ) signals. Then the IF signal is further up-converted to
60 GHz and finally transmitted by a 16-antenna phased array.
The antenna selection, beam switch, and power gain of the
phased array are controlled by a host computer. To achieve
sufficient ranging accuracy, the transmission signal is modu-
lated with 8 subcarriers and 12.5 MHz bandwidth via OFDM
technology.

Before the measurements, the inter-element spacing and the
inter-element phase offset of both phased arrays at the trans-
mitter and the receiver should be calibrated, which is elabo-
rated below.

Inter-element spacing calibration: Although antenna ar-
rays are designed with half-wavelength inter-element spacing
to generate beam patterns with a single main lobe and low side
lobes, the wavelength varies at different carrier frequencies.
The difference of adjacent carrier frequencies in the 60 GHz
band is generally more than 1 GHz and cannot be neglected.
Moreover, the direct measurement of inter-element spacing
may not be accurate due to the short wavelength and small
antenna size[19].
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Fig. 4 Hardware architecture

To address the above issue, we measure the inter-element
spacing via the received signals of the phased array. We use a
transmitter with a horn antenna to transmit a single tone and
mount the phased array to be calibrated on a rotation platform
as the receiver. The mmWave absorbers are used to suppress
the potential NLoS paths. The received signals are collected at
Nθ different AoAs. For a certain AoA, each antenna element
is triggered alternatively to receive the same single tone. Let
ϕm,n be the estimated phase of the nth antenna element at the
mth AoA, denoted as θm, then the inter-element spacing can
be estimated by

d⋆=argmax
d

N

∑
n=2

∣∣∣∣∣ Nθ

∑
m=1

exp
(

j
(

ϕm,n−ϕm,n−1−2π
d sinθm

λ

))∣∣∣∣∣ .
(20)

Inter-element phase offset calibration: Notice that the
phase offset is caused by the different transmission lines of
antenna elements, we calibrate it with a transmitter at the bore-
sight direction of the phased array. In the above calibration of
inter-element spacing, let θ1 = 0, the phase offset difference
of two adjacent elements (say between the nth and (n− 1)th
antenna elements) due to transmission lines can be estimated
directly by ϕ1,n−ϕ1,n−1. As a result, the phase offset of all the
remaining antenna elements with respect to the first element
can be compensated.

The mmReality system is deployed in a corridor with an
irregular layout as illustrated in Fig. 5. The position of the
transmitter is fixed, and the receiver is put at 15 measurement
points respectively as in Fig. 8. At each measurement point,
the OFDM signal is transmitted via 16×16 pairs of transmis-
sion and receiving beams.

B. Accuracy of AoA/AoD Estimation
In this part, the accuracy of AoA and AoD estimations

based on the MUSIC algorithm is illustrated. The estimated
AoAs/AoDs and the ground truths for LoS paths and NLoS
paths (first-order reflection paths) are illustrated in Fig. 6(a)
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Fig. 5 Experimental environment of the corridor

−30         0          30
Estimated AoA/AoD (°)

−45
−30
−15

0
15
30
45

G
ro

un
d 

tr
ut

h 
A

oA
/A

oD
 (

°)

AoA
AoD

(a)

0 2 4 6 8 10
AoA/AoD error (°)

0.2

0.4

0.6

0.8

1.0

C
D

F

AoA
AoD

(b)

−30         0          30
Estimated AoA/AoD (°)

−45
−30
−15

0
15
30
45

G
ro

un
d 

tr
ut

h 
A

oA
/A

oD
 (

°)

AoA
AoD

(c)

0 2 4 6 8 10
AoA/AoD error (°)

0.2

0.4

0.6

0.8

1.0

C
D

F

AoA
AoD

(d)

Fig. 6 Illustration of AoA/AoD estimation: (a) Estimated AoA/AoD versus
ground truth in LoS scenario; (b) CDF of AoA/AoD estimation error in LoS
scenario; (c) Estimated AoA/AoD versus ground truth in NLoS scenario; (d)
CDF of AoA/AoD estimation error in NLoS scenario

and Fig. 6(c), respectively. The ground truth AoAs/AoDs in
the environment is measured by a laser rangefinder. Since the
AoA/AoD in 360◦ azimuth can be estimated by rotating the
phased array towards the four quadrants, we only estimate the
angles ranging from −45◦ to 45◦. It can be observed that the
estimated AoAs/AoDs match the ground truth in both LoS and
NLoS scenarios. Moreover, the cumulative distribution func-
tions (CDF) of the magnitudes of the estimation errors for the
LoS scenario and the NLoS scenario are illustrated in Fig. 6(b)
and Fig. 6(d), respectively. It can be observed that 90% of the
estimations are with estimation errors less than 4◦.

C. Accuracy of Path Length Estimation
Fig. 7(a) and Fig. 7(c) illustrate the estimated path lengths

and the ground truth for LoS paths and NLoS paths (first-order
reflection paths), respectively. The estimated path lengths
range from 1.6 m to 10 m for a typical indoor scenario. It can
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Fig. 7 Illustration of path length estimation: (a) Estimated path length ver-
sus ground truth in LoS scenario; (b) CDF of the estimation error of path
lengths in LoS scenario; (c) Estimated path length versus ground truth in
NLoS scenario; (d) CDF of the estimation error of path lengths in NLoS sce-
nario

be observed that the estimated path lengths match the ground
truths in both LoS and NLoS scenarios. The CDFs of the path
length estimation errors for LoS paths and NLoS paths are
illustrated in Fig. 7(b) and Fig. 7(d), respectively, where the
average estimation error for LoS paths and NLoS paths are
0.15 m and 0.25 m, respectively. It is intuitive that the estima-
tion for LoS paths performs better than that for NLoS paths
because NLoS paths suffer severe reflection loss.

D. Room Layout Reconstruction

Integrating the estimated AoAs, AoDs, and path lengths at
all measurement points, the reconstructed layout of the corri-
dor is illustrated in Fig. 9, where the blue solid line and the red
dotted line represent the real and estimated walls, respectively.
It can be seen that all six walls are detected with high estima-
tion accuracy, as both lines almost overlap. Moreover, the es-
timated positions of measurement points, virtual transmitters,
and reflecting points are also illustrated in Fig. 9. As a remark
notice that higher-order reflections can be found in the mea-
surements, although the LoS and first-order reflection paths
are dominant. However, since the virtual transmitters of the
higher-order reflection paths are sparse, they are eliminated
by the DBSCAN algorithm. Hence, only the estimated virtual
transmitter positions of the first-order reflection is shown in
Fig. 9.

The CDFs of the localization errors of the measurement
points and reflection points are illustrated in Fig. 10(a) and
Fig. 10(b), respectively. The average localization error of the
measurement points is 0.42 m, and 90% of the localization

Rx 1

Rx 2

Rx 3

Rx 5 Rx 8

Rx 6

Rx 7

Rx 4

Rx 9 Rx 10 Rx 12 Rx 14

Rx 11 Rx 13 Rx 15TX

Fig. 8 Corridor layout illustration with the positions of the transmitter and
measurement points
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Fig. 9 Corridor layout reconstruction
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Fig. 10 CDF of the localization error: (a) Measurement points; (b) Reflec-
tion points

errors are below 0.8 m, while those of the estimated reflec-
tion points are 0.6 m and 1.2 m respectively. The localization
error of reflection points is generally larger. This is because
the localization of reflection points is based on the estimated
positions of measurement points.

E. Localization Accuracy via AoA Spectrum
Based on the detected corridor layout, the localization per-

formance via the AoA spectrum is demonstrated in this part.
Specifically, the receiver is randomly deployed at 25 positions
in the corridor successively, and the AoA spectrum is mea-
sured by the receiver at each position for localization. The
CDF of localization error is illustrated in Fig. 11. It can be
observed that 90% of the localization error is within 1.3 m,
and the average localization error is 1.0 m. Two examples of
localization via AoA spectrum are shown in Fig. 12, where
different colors are used to demonstrate the value of the er-
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Fig. 11 CDF of the localization error based on the reconstructed layout and
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Fig. 12 Two examples of localization via AoA spectrum

ror function f defined in (18). The localization error mainly
results from the localization error of virtual transmitters.

F. Impact of Measurement Point Number
We evaluate the impact of the number of measurement

points on the localization accuracy in another indoor environ-
ment as illustrated in Fig. 13(a). The detection accuracy of the
marked wall (as well as the virtual transmitter via the wall) is
evaluated. As shown in Fig. 13(b), the transmitter is deployed
4.06 meters away from the wall and 21 points between the
transmitter and the wall are taken as the candidate measure-
ment points. The localization accuracy of the virtual trans-
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Fig. 13 (a) Experimental environment of the office; (b) Office layout and
the positions of the transmitter and measurement points
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Fig. 14 Localization error versus the number of measurement positions

mitter versus the number of measurement points is shown in
Fig. 14. For a given number, the measurement points are ran-
domly picked from the 21 candidates 100 times for averaging.
It can be observed that with more than 16 measurement points,
the localization error can converge to 0.26 m.
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Fig. 15 Localization error versus the number of received OFDM symbols

G. Impact of Measurement Time
We then analyze the sensitivity of the virtual transmitter

localization with respect to the measurement time, i.e., the
number of received OFDM symbols for each pair of precoder
and combiner. As shown in Fig. 15, the number of received
OFDM symbols will affect the accuracies of both angle and
path length estimation, and finally the estimated position of
the virtual transmitter. The localization error decreases signif-
icantly with the OFDM symbol number at the very beginning.
With more than 40 received OFDM symbols, the localization
error of the virtual transmitter will be below 0.4 m. Note that
it takes around 13.1 ms to transmit 40 OFDM symbols for all
the pairs of precoder and combiner.

VII. CONCLUSION

In this paper, the mmReality system for indoor layout re-
construction and fast localization was elaborated. Exploit-
ing the quasi-statistic channel, the 2D-MUSIC algorithm was
used to detect the AoAs and AoDs of the paths between the
transmitter and the receiver with an analog MIMO front-end.
The path length can then be estimated via multi-carrier rang-
ing. Based on the AoAs, AoDs, and path lengths estimated by
the receiver at different locations, the indoor layout can be re-
constructed. With the layout knowledge, we continue to show
that the receiver can be localized via the observed AoAs. The
experiment results of this paper demonstrated the feasibility
to track the environment and trajectory of mobile devices via
mmWave communication signals. With both environment and
trajectory information, communication efficiency may be im-
proved, which is a promising topic for future study.

In our current testbed, the mmWave RF front-end support
IEEE 802.11ad communication, i.e., gigahertz bandwidth.
However, due to the limited sampling rate of the baseband
processor and throughput of the network interface card, we
can only apply 12.5 MHz bandwidth at 60 GHz for wire-
less sensing. The limited bandwidth in the baseband results
in low-range resolution (12 meters for 12.5 MHz bandwidth)

for room layout reconstruction. The system design supporting
gigahertz-bandwidth mmWave communications and sensing
is left for future work.
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