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Abstract—The freshness of information, measured as Age of
Information (AoI), is critical for many applications in next-
generation wireless sensor networks (WSNs). Due to its high
bandwidth, millimeter wave (mmWave) communication is seen
to be frequently exploited in WSNs to facilitate the deployment
of bandwidth-demanding applications. However, the vulnerability
of mmWave to user mobility typically results in link blockage
and thus postponed real-time communications. In this paper,
joint sampling and uploading scheduling in an AoI-oriented WSN
working in mmWave band is considered, where a single human
blocker is moving randomly and signal propagation paths may
be blocked. The locations of signal reflectors and the real-time
position of the blocker can be detected via wireless sensing
technologies. With the knowledge of blocker motion pattern,
the statistics of future wireless channels can be predicted. As
a result, the AoI degradation arising from link blockage can be
forecast and mitigated. Specifically, we formulate the long-term
sampling, uplink transmission time and power allocation as an
infinite-horizon Markov decision process (MDP) with discounted
cost. Due to the curse of dimensionality, the optimal solution
is infeasible. A novel low-complexity solution framework with
guaranteed performance in the worst case is proposed where
the forecast of link blockage is exploited in a value function
approximation. Simulations show that compared with several
heuristic benchmarks, our proposed policy, benefiting from the
awareness of link blockage, can reduce average cost up to 49.6%.

Index Terms—Markov decision process, millimeter wave, age
of information, wireless sensor networks

I. INTRODUCTION

In wireless sensor networks (WSNs), the timeliness of status

information sampled at the sensor locations (e.g., camera snap-

shots or broadband radar signals) is critical for effective moni-

toring in many real-time and data-intensive applications. With

the ever-increasing dense sensor deployment and bandwidth

demand, communication in millimeter wave (mmWave) band

has great potential to be integrated in WSNs due to its wide

spectrum. However, because of the sparse propagation paths

and the pencil-shaped beams for overcoming the extremely

high path loss, mmWave communications may suffer from

the blockage problem in dynamic environments. This will

cause severe channel fluctuation and link outage, making the

delivered status information outdated [1].

This work was supported in part by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2019B1515130003, and in part by
the National Natural Science Foundation of China under Grant 62171213.

Bojie Lv is the corresponding author (lyubj@mail.sustech.edu.cn).

To quantify the freshness of the status information, the

concept of Age of Information (AoI) has been adopted as a

metric [2]. AoI is defined as the time elapsed since the status

update is sampled at the sensor. From the joint sensing and

transmission scheduling perspective, the AoI of samples deliv-

ered from the sensors should be as fresh as possible in order

to guarantee accurate monitor and synchronous control. There

have been a number of research works on AoI scheduling

design in various WSNs [3]–[9]. In [3], the authors minimized

the long-term average AoI of a single sensor with an energy

harvesting battery. The scheduling design was formulated as a

continuous time stochastic control problem. In [4], the problem

of status update control in an EH-enabled source via an

mmWave link was formulated as a Markov decision process

(MDP). In addition to the single sensor scenario, the works in

[5], [6] extended the joint sampling and transmission design

to the multi-sensor scenario. [5] minimized the summation

of average AoIs of multiple sensors under the sampling and

transmission energy constraints via an MDP formulation. This

work was further extended in [6] by considering transmission

failures and non-uniform sample size. However, the algorithms

proposed in many of the existing works, such as the Q-learning

algorithm used in [4] and the policy iteration algorithm used

in [9], are prohibitive in computation complexity which grows

exponentially with respect to the number of sensors. Although,

the linear approximation of value functions adopted in [5],

[6] can reduce the computation complexity, it is difficult to

analyze their performance analytically. As a result, how to de-

sign approximate MDP (AMDP) for AoI-oriented scheduling

design with a guarantee on worst-case performance and low

computational complexity is still unanswered.

Because of the small wavelength, the link blockage has

become one of the open issues in mmWave communications,

especially in indoor scenarios where swarms of mobile users

may roam around constantly. Fortunately, with the technique

of wireless sensing, the room layout can be reconstructed in

advance [10]–[12], and the mobility of the human body can be

detected in real time [13], such that potential link degradation

due to blockage can be predicted. To our best knowledge,

there exists no previous work on the AoI-oriented scheduling

design problem exploiting the environment and human motion

detection. In fact, all the existing works, e.g., [4]–[6], [8], [9],

adopted the stochastic channel models, which are oblivious to
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the signal propagation environment [14]. Hence, link blockage

due to human mobility can hardly be captured.

In order to exploit wireless sensing in AoI-oriented schedul-

ing design, we consider joint sampling and uploading schedul-

ing in an mmWave-based sensor network with awareness of the

communication environment which includes the static signal

reflectors and one dynamic human blocker. Specifically, in

the mmWave-based WSN, the sensors detect their targets,

save the sensing samples in their buffers, and deliver the

data to a server via an mmWave uplink. A human blocker is

moving randomly, which blocks some signal paths, causing a

significant degradation in the corresponding uplink channel.

Sampling at the sensor and uplink transmission are jointly

scheduled to minimize the AoI of the data samples at the

monitor and energy consumption for sampling and uplink

transmission. The joint scheduling is formulated as an infinite-

horizon MDP with discounted cost, so that knowledge of the

mmWave propagation channel and human dynamics can be

exploited. The main contributions of this work are summarized

as follows:

• A predictive scheduling framework is provided for

environment-aware transmission scheduling. In the proposed

MDP formulation, the future AoI degradation due to po-

tential link blockage is naturally considered in the current

scheduling according to the Bellman’s equations.

• We propose a low-complexity AMDP framework with a

guarantee of the worst-case performance. Specifically, we

first introduce a decoupling principle to design heuristic

scheduling polices as the reference policy, whose average

cost (i.e., value function) can be derived analytically. With

the expression of the value function, the above policy

iteration can be formulated analytically, whose optimiza-

tion efficiency is significantly better than the conventional

numerical search. Simulations show that compared with sev-

eral heuristic benchmarks, our proposed policy, benefiting

from the awareness of the link blockage, can reduce the

average cost with a high performance gain.

The remainder of this paper is structured as follows. The

system model is introduced in Section II. In Section III,

the problem of dynamic sampling and uploading scheduling

is formulated as an infinite-horizon MDP. In Section IV, a

low-complexity suboptimal scheduling framework is proposed

with a guarantee on the worst-case performance. Finally,

the performance of the proposed low-complexity scheduling

scheme is verified by comparing with benchmarks in Section

V, and the conclusion is drawn in Section VI.

II. SYSTEM MODEL

In this section, we first give an overview of the mmWave-

based WSN including the blocker mobility model, and then

define the channel model as well as the AoI model. We use

the following notation throughout this paper. Bold lowercase a
denotes a column vector, bold uppercase A denotes a matrix,

non-bold letters a and A denote scalar values, and the letter

A denotes a set. (a)+ denotes max(0, a). [A]i,j , AT, and
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Fig. 1. Network model of the considered mmWave-based WSN.

Symbol Description

K/K Number/Set of sensors
Ht,k Channel matrix of k-th sensor in t-th frame

lBt Location index of the mobile blocker in t-th frame
Yt,k Baseband channel power gain of k-th sensor in t-th frame
Qt,k Queue length of k-th sensor in t-th frame
Ast,k AoI at k-th sensor in t-th frame

Adt,k AoI for k-th sensor at the server in t-th frame

st,k Sampling action for k-th sensor in t-th frame
τt,k Transmission time allocated to k-th sensor in t-th frame
pt,k Transmission power of k-th sensor in t-th frame

TABLE I. Main notations.

AH denote the (i, j)-th element, transpose, and conjugate

transpose, respectively. CN (m,R) denotes complex Gaussian

distribution with mean m and variance R. U [a, b] denotes a

uniform distribution over the interval [a, b]. E[.] denotes an

expectation operator. I[.] denotes an indicator function. The

main notations used are listed in Table I.

A. Network Model
As illustrated in Fig. 1, we consider an mmWave-based

wireless monitoring system in a two-dimensional indoor space

consisting of one server connected with the base station (BS)

and K sensors, where the sensors sense the targets (e.g., taking

photos or detecting motions via radar waves), collect sensing

samples, and deliver the sensing samples to the server via

the BS. The set of sensors is denoted as K� {1, 2, . . . ,K}.
The sensing sample collection, namely sampling, and sample

uploading are scheduled to maintain the timeliness of sensing

data at the server. Both line-of-sight (LoS) and non-line-of-

sight (NLoS) paths (e.g., reflection paths from the walls) exist

between the sensors and the BS. There is one person moving

in the space, who may block the propagation paths from the

sensors to the BS. In this work, we consider the case of

only one mobile blocker in the ambient environment which

represents most practical scenarios while leave multi-blocker

scenarios to future work. With wireless sensing techniques

[15], [16], it is assumed that the location of the human blocker

can be detected. The analog MIMO architecture with single

radio frequency (RF) chain and a half-wavelength uniform

linear phased array (ULA) is adopted at both the BS and the

sensors, so that both transmission and receiving beams can
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be aligned to the available paths. The linear phased arrays

at the BS and sensors have NR and NT antenna elements,

respectively.

The uplink transmission time is organized by physical-layer

frames with duration TF, where the channel state information

(CSI) is assumed to be quasi-static in one frame. The locations

of the indoor space are quantized into grids with indexes. Let

L � {1, 2, . . . , |L|} be the set of location indexes. The location

indexes of the BS and the k-th sensors are denoted as lBS

and lsk, respectively. The location index of the mobile human

blocker in the t-th frame is denoted as lBt . It is assumed that

the mobility of the blocker follows a time-invariant Markov

chain, with the following transition probabilities,

Pr
[
lBt+1=�′

∣∣lBt =�
]
=
[
PB
]
�,�′ , ∀t, ∀�, �′ ∈ L, (1)

where PB ∈ R
|L|×|L| denotes the transition matrix of the

blocker’s mobility.

B. Channel Model
In order to capture the impact of human blockage, the

geometric channel model [17] is adopted in this paper. There

are at most M NLoS paths and one LoS path from one sensor

to the BS. Specifically, denote M = {0, 1, 2, . . . ,M} as the

index set of propagation paths, where the index of the LoS

path is 0. For the convenience of exposition, the i-th path of

the k-th sensor is denoted as the (k, i)-th path. Hence, the

channel matrix Ht,k ∈ CNR×NT from the k-th sensor to the

BS in the t-th frame can be written as

Ht,k =
∑
i∈M

Bt,k,i(l
B
t )αt,k,iaR(φk,i)a

H
T(θk,i), (2)

where Bt,k,i(l
B
t ) ∈ {0, 1} is the blockage indicator. Thus,

Bt,k,i(l
B
t ) = 0 when (k, i)-th path is blocked, otherwise

Bt,k,i(l
B
t ) = 1. Moreover, φk,i and θk,i denote the angle of

arrival (AoA) and angle of departure (AoD) of the (k, i)-
th path, respectively. αt,k,i denotes the complex gain of the

(k, i)-th path in the t-th frame obeying a complex Gaussian

distribution with zero mean and variance ρ−1k,i , i.e., αt,k,i ∼
CN (0, ρ−1k,i). The path loss ρk,i depends on the path length R
and the reflection loss (for NLoS path). Moreover, aR(φk,i)
and aT(θk,i) represent the normalized array response vectors

of the ULAs at the sensors and the BS, respectively. Thus,

aR(φk,i)=
1√
NR

[
1, e−jπ sin(φk,i), . . ., e−jπ(NR−1) sin(φk,i)

]T
,

aT(θk,i)=
1√
NT

[
1, e−jπ sin(θk,i), . . ., e−jπ(NT−1) sin(θk,i)

]T
.

The human blocker is modeled as a disk with radius rB, and

hence, the indicator Bt,k,i can be determined by comparing

the blocker radius with the shortest distances between the

blocker’s centroid and the i-th path. Let Pk,i be the set of line

segments in the (k, i)-th path, and D(�,Pk,i) be the minimum

distance from the disk centroid to the line segments of the

(k, i)-th path, then Bt,k,i(l
B
t ) = I[D(lBt ,Pk,i)≥ rB]. The path

loss of the LoS path is usually much smaller than that of the

NLoS paths. Therefore, the uplink transmission suffers from

significant degradation when the LoS path is blocked.

Let wt,k∈CNR×1 and ft,k∈CNT×1 be the analog combiner

and precoder of the BS and the k-th sensor when the k-

th sensor is transmitting in the t-th frame, respectively. The

uplink capacity of the k-th sensor in the t-th frame can be

expressed as

Rt,k � W log2

(
1 + pt,k

∣∣wH
t,kHt,kft,k

∣∣2
‖wt,k‖2N0W︸ ︷︷ ︸
Baseband gain Yt,k

)
, (3)

where Yt,k(l
B
t ) � |wH

t,kHt,kft,k|2
‖wt,k‖2N0W denotes the baseband channel

power gain, pt,k denotes the transmission power of the k-

th sensor, N0 is the noise power spectral density, W is the

bandwidth. Due to the hardware constraint, the maximum

transmission power satisfies

pt,k ≤ Pmax, ∀t, k ∈ K. (4)

The analog precoders and combiners are chosen from a

pre-defined codebook composed of a finite number of beam

directions, as follows,

wt,k ∈ W � {aR(φq), q = 1, 2, . . . , NR}, (5)

ft,k ∈ F � {aT(φp), p = 1, 2, . . . , NT}, (6)

where φq =arcsin
(
2(q−1)

NR
−1
)

, and θp=arcsin
(
2(p−1)

NT
−1
)

.

In order to avoid the costly channel matrix estimation in every

frame, the transmission and receiving beams are adapted to

maximize the average signal-to-noise ratio (SNR) instead of

instantaneous SNR, as follows,

(wt,k, ft,k) = argmax
aR(φq)∈W
aT(φp)∈F

EHt,k

∣∣aHR(φq)Ht,kaT(θp)
∣∣2. (7)

Since the AoAs and AoDs of the paths in (2) are static, they

can be estimated before the scheduling, as in [10], [11]. The

variances of path gains {αk,i, ∀k, i}, can also be measured

before the transmission [11]. Given the location of the human

blocker by real-time localization [12], the distributions of

channel matrices {Ht,k, ∀t, k} can be predicted. Hence, the

optimization in (7) is feasible even if Ht,k is unknown.

Intuitively, (7) would align the transmission and receiving

beams along the path with minimum path loss.

Time-Division Multiple Access (TDMA) is adopted in each

frame. Let τt,k be the transmission time allocated to the k-th

sensor in the t-th frame; the following constraints should be

satisfied, ∑
k∈K τt,k = TF, ∀t, (8)

0 ≤ τt,k ≤ TF, ∀t, k ∈ K. (9)

Moreover, the throughput of the k-th sensor in the t-th frame

is τt,kRt,k.

C. AoI Model for Sample Uploading
If the server delivers a sensing decision to the k-th sensor at

the beginning of the t-th frame, a sensing sample representing
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the latest target status is generated by the sensor. Since the

sensing decision is usually short, we ignore the downlink

signalling overhead. It is assumed that the data volume of each

sample generated by the k-th sensor consists of Lk packets,

each with Nb information bits. Let Qt,k be the length of the

uplink transmission queue (number of uplink packets) of the

k-th sensor in the t-th frame, where the sensing sample is

buffered. When new data sample is generated at one sensor,

the existing packets from the previous sampling in its uplink

queue will be dropped, and new packets will be added. The

sampling action will induce a constant sampling energy cost

which is denoted by Cs. Let st,k ∈ {0, 1} be the sampling

action for the k-th sensor in the t-th frame, where st,k = 0
indicates that the k-th sensor will continue transmitting data

packets of its current sample in the t-th frame, and st,k = 1
indicates that the k-th sensor will start transmitting the packets

of the new sample. Thus,

Qt+1,k =

{
(Qt,k −Dt,k)

+, st,k = 0

Lk −Dt,k, st,k = 1
(10)

where Dt,k denotes the departure packet number of the k-th

sensor in the t-th frame. Thus, Dt,k =
⌊Rt,kτt,k

Nb

⌋
.

To characterize the freshness of samples, the AoI at the k-th

sensor, denoted by Ast,k, is defined as the number of frames

since the generation time of the latest sample. Moreover, since

samples with extremely large AoIs will bring no benefit to the

server due to its outdatedness, we set an AoI threshold Amax
to characterize outdated samples. The AoI dynamics at the

k-th sensor is given by

Ast+1,k =

{
min{Ast,k + 1, Amax}, st,k = 0

1, st,k = 1
(11)

Besides the AoIs at the sensors, the server records AoIs of

the latest uploaded samples of all sensors. Once the transmis-

sion of all packets at the k-th sensor is accomplished, the AoI

at the server for the k-th sensor will be updated by the AoI at

the k-th sensor in next frame. Hence, let Adt,k be the AoI for

the k-th sensor at the server in the t-th frame, we have

Adt+1,k =

{
min{Ast,k+1, Amax}, (Qt,k−Dt,k)

+=0

min{Adt,k+1, Amax}, otherwise
(12)

III. PROBLEM FORMULATION

The average AoI at the server depends on the sampling

action, time and uplink power allocations of all the frames.

Clearly, due to the random motion of the human blocker

and random channel matrices, it is impossible for the BS

to determine the sampling action, time and uplink power

allocations of all the frames in a deterministic manner. Instead,

we shall formulate their optimization as an infinite-horizon

MDP. The system state, scheduling policy, and system cost

are first defined below.

Definition 1 (System State). At the beginning of the t-th
frame, the global system state is uniquely specified by a tuple
St � (lBt ,Yt,Qt,Ast,Adt ), where Yt � {Yt,k}k∈K is the set of

baseband channel power gains of all sensors, Qt�{Qt,k}k∈K
is the set of remaining numbers of packets at the uplink
queues, Ast�{Ast,k}k∈K is the set of AoIs at the sensors, and
Adt � {Adt,k}k∈K is the set of AoIs at the server. Moreover,
the local system state of the k-th sensor in the t-th frame is
defined by St,k�(lBt , Yt,k, Qt,k, A

s
t,k, A

d
t,k).

Definition 2 (Action and Policy). The local scheduling action
of the k-th sensor is defined as at,k � (st,k, τt,k, pt,k),
including the sampling decision, and uplink transmission time
and power. The global scheduling action is defined as the
aggregation of the local actions of all the sensors; thus,
at � {at,k}k∈K. Hence, the scheduling policy, denoted as
Ω, is a mapping from the system state St to the scheduling
actions, i.e., Ω(St) = at.

Given the scheduling policy Ω, the state transition proba-

bility can be written as in (13).

In the t-th frame, the per-frame cost is defined as the

weighted sum of AoIs at the server, energy consumption for

sampling and uplink transmission, and outdated AoI penalties

at the server for all sensors. That is,

g(St,Ω(St)) =
∑

k∈K
[
Adt,k + wP(st,kC

s + τt,kpt,k)

+ wQI[A
d
t,k = Amax]

]
, (14)

where wP and wQ denote the weights for energy consumption

and AoI outdatedness penalty, respectively. Note that the first

and third terms of (14) imply a nonlinear cost function for

AoI [18].

Hence, the overall cost from the 1-st frame is defined as

G(S1,Ω) � lim
T→∞

[
EY,LB

T∑
t=1

γt−1gt(St,Ω(St))
∣∣∣S1
]
, (15)

where γ ∈ (0, 1) is the discount factor, and the expectation

is taken on Y � {Y1,Y2, . . .,YT } and LB � {lB1, lB2, . . ., lBT }.
As a result, the joint sampling and uploading optimization

can be formulated by the following infinite-horizon MDP with

discounted cost.

P1 : Ω� = argminΩ G(S1,Ω)

s.t. Constraints in (4), (8), (9).

The Bellman’s equations of the above MDP are

W (S) =minΩ(S)
[
g
(S,Ω(S))

+ γ
∑

S′ W (S ′) Pr[S ′|S,Ω(S)]], ∀S, (16)

where W (·) is the value function of the optimal scheduling

policy (i.e., the optimal value function), and S ′ is the system

state in the next frame given system state S and scheduling

action Ω(S). Moreover, the policy minimizing the right-hand-

side (RHS) of the above Bellman’s equations is proved to be

the optimal one [19].

Note that the baseband gain in the system state is con-

tinuously and independently distributed in all frames, which

can be eliminated from the value function to reduce the

complexity. Hence, we first define the local and global abstract
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Pr
[St+1

∣∣St,Ω(St)
]
=Pr

[
lBt+1
∣∣lBt ]Pr

[Yt+1

∣∣lBt+1]×∏k∈K
{
(1−st,k)I

[
Ast+1,k =min{Ast,k+1, Amax}

]
+st,kI

[
At+1,k =1

]}
×∏k∈K

{
(1−st,k)I

[
Qt+1,k =(Qt,k−Dt,k)

+
∣∣Yt,k, τt,k, pt,k

]
+st,kI

[
Qt+1,k =Lk−Dt,k

∣∣Yt,k, τt,k, pt,k

]}
×∏k∈K

{
I
[
(Qt,k−Dt,k)

+=0
]
I
[
Adt+1,k =min{Ast,k+1, Amax}

]
+I
[
(Qt,k−Dt,k)

+ 	=0
]
I
[
Adt+1,k =min{Adt,k+1, Amax}

]}
. (13)

state [20] with the baseband gain eliminated, i.e., S̃t,k �
(lBt , Qt,k, A

s
t,k, A

d
t,k) and S̃t � (lBt ,Qt,Ast,Adt ). By taking

expectation on both sides of (16), the Bellman’s equations

with respect to the abstract state can be simplified as

W (S̃) =EY minΩ(S)
[
g
(S,Ω(S))

+ γ
∑

S̃′ W (S̃ ′) Pr[S̃ ′|S,Ω(S)]], ∀S̃, (17)

where S̃ ′ is the abstract state in the next frame. The optimal

value function with respect to the abstract state can be repre-

sented as follows,

W (S̃) = EYW (S) = min
Ω
E
Ω
Y,LB

lim
T→∞

∑T

t=1
γt−1[g(S̃t,Ω(S̃t)

)∣∣S̃1 = S̃], ∀S̃. (18)

With the value function of the optimal policy for an arbitrary

abstract state {W (S̃)|∀S̃} and the current system state St, the

optimal action in the t-th frame is given by

Ω�(St) = argmin
Ω(St)

[
gt
(St,Ω(St)

)
+ γ
∑

S̃t+1
W (S̃t+1) Pr[S̃t+1|St,Ω(St)]

]
, ∀St. (19)

Although conventional approaches such as policy and value

iteration can be used to find the optimal scheduling policy

[19], they suffer from the curse of dimensionality: due to the

huge system state space, the evaluation of {W (S̃t)|∀S̃t} is

prohibitive. In the following section, we shall propose a low-

complexity scheduling scheme to address this issue.

IV. LOW-COMPLEXITY SCHEDULING

In this section, a low-complexity scheduling scheme with

analytical performance bound is proposed. Here is a sketch of

the proposed scheme:

• Section IV-A: We first design a heuristic scheduling policy

as the reference policy, whose value function (average

discounted cost) can be analytically expressed with mobile

blocker detection.

• Section IV-B: Approximating the optimal value function

via the above derived value function, the scheduling action

of each frame can be obtained by solving the optimization

problem in (19).

• Section IV-C: We decouple the problem and then propose

an alternative optimization algorithm to derive the subopti-

mal solution.

• Section IV-D: We analyze the performance bound and time

complexity of the proposed suboptimal solution.

A. Decoupled Reference Policy
A heuristic reference policy is proposed to provide an

expression for an achievable average discounted cost. In fact,

given the policy, the system evolves as a Markov chain, whose

cost can be derived via the transition matrix. However, the

dimension of the transition matrix grows exponentially with

respect to the number of sensors, which makes the above

approach infeasible. In order to address this issue, in the

reference policy, the transmission time allocation of the K
sensors is fixed. Hence, the state transition of the sensors can

be decoupled into K Markov chains with significantly smaller

state space. We adopt the following decoupled reference policy

(which we refer to as reference policy); however, the design

of reference policy is not unique.

Policy 1 (Decoupled Reference Policy Π). The reference
policy, denoted as Π�(sΠt,k, τ

Π
t,k, p

Π
t,k), is elaborated below.

• The sampling decision is made when the uplink queue is
empty, i.e., sΠt,k =I[Qt,k =0].

• The transmission time allocation is proportional to the
data volume of corresponding sampling, i.e., τΠt,k =
TFLk/

∑
k′∈K Lk′ .

• The transmission power is constant, i.e., pΠt,k =PΠ.

To derive the average discounted cost for each sensor, we

first express the transition matrices of the local abstract state

of the sensors. Specifically, let st,k ∈ R|L|(Lk+1)A
2
max×1 be

the vector representing the probabilities of all local abstract

states of the k-th sensor, where the κ(lBt , ε(Qt,k, A
s
t,k, A

d
t,k))-

th entry denotes the probability of the local abstract state

S̃t,k = (lBt , Qt,k, A
s
t,k, A

d
t,k), and κ(lBt , ε(Qt,k, A

s
t,k, A

d
t,k)) �

(lBt−1)(Lk+1)A2max+ε(Qt,k, A
s
t,k, A

d
t,k) and ε(Qt,k, A

s
t,k, A

d
t,k)�

Qt,kA
2
max + (Ast,k − 1)Amax + Adt,k are indexes. Let Pk ∈

R
|L|(Lk+1)A

2
max×|L|(Lk+1)A

2
max be the transition probability ma-

trix of the local abstract state of the k-th sensor, we have

st+1,k = PT
kst,k. In order to derive the expression of Pk,

we first introduce the following lemma on the distribution of

departure packet number.

Lemma 1. With sufficiently large NR and NT, given the
reference policy Π, the precoder and combiner in (7), and the
blocker’s location lBt , the probability mass function (PMF)
of departure packet number can be written by (20), where
i�=argmaxi Bt,k,i(l

B
t )ρ−1k,i .

Proof. Please refer to Appendix A.

As a result, we have the following lemma on the transition

matrix Pk.

Lemma 2. With sufficiently large NR and NT, given the
reference policy Π, the precoder and combiner in (7), and
the blocker’s location lBt , the transition probability matrix of
local abstract state of the k-th sensor is given by (21), where
M
(�)
k ∈ R

(Lk+1)A
2
max×(Lk+1)A

2
max is given by Table II, and

PB is defined in (1).
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Pr
[
DΠt,k = d

∣∣lBt ] = exp

(
−ρk,i�N0W

PΠ

(
2

dNb
WτΠ

t,k − 1
))

− exp

(
−ρk,i�N0W

PΠ

(
2

(d+1)Nb
WτΠ

t,k − 1
))

. (20)

Pk =

⎛⎜⎜⎜⎜⎜⎝

[
PB
]
1,1

M
(1)
k

[
PB
]
1,2

M
(1)
k · · · [

PB
]
1,|L|M

(1)
k[

PB
]
2,1

M
(2)
k

[
PB
]
2,2

M
(2)
k · · · [

PB
]
2,|L|M

(2)
k

...
...

. . .
...[

PB
]
|L|,1M

(|L|)
k

[
PB
]
|L|,2M

(|L|)
k · · · [PB]|L|,|L|M(|L|)

k

⎞⎟⎟⎟⎟⎟⎠ , (21)

Qt,k Ast,k Adt,k Qt+1,k Ast+1,k Adt+1,k

[
M
(�)
k

]
ε(Qt,k,A

s
t,k
,Ad
t,k
),ε(Qt+1,k,A

s
t+1,k

,Ad
t+1,k

)

0 1,. . ., Amax 1,. . ., Amax 0 1 1 Pr
[
DΠt,k≥Lk

∣∣∣lBt =�
]

0 1,. . ., Amax 1,. . ., Amax 1,. . ., Lk 1 min{Adt,k+1, Amax} Pr
[
DΠt,k=Lk−Qt+1,k

∣∣∣lBt =�
]

1,. . ., Lk 1,. . ., Amax 1,. . ., Amax 0 min{Ast,k+1, Amax} min{Ast,k+1, Amax} Pr
[
DΠt,k≥Qt,k

∣∣∣lBt =�
]

1,. . ., Lk 1,. . ., Amax 1,. . ., Amax 1,. . ., Qt,k min{Ast,k+1, Amax} min{Adt,k+1, Amax} Pr
[
DΠt,k=Qt,k−Qt+1,k

∣∣∣lBt =�
]

TABLE II. Non-zero entries of matrix M
(�)
k .

Proof. Please refer to Appendix B.

Finally, the value function of the reference policy, namely,

the approximate value function, is given by the following

theorem.

Theorem 1 (Value Function of Reference Policy Π). With the
reference policy Π, the value function is given by

WΠ(S̃t) =
∑
k∈K

(e
|L|(Lk+1)A

2
max

κ(lBt ,ε(Qt,k,Ast,k,A
d
t,k))

)T[I− γPk]
−1gk︸ ︷︷ ︸

�WΠ
k (S̃t,k)

+
1

1− γ
wPTFP

Π, (22)

where eN
n denotes an N × 1 column vector whose n-th

element is 1 and otherwise 0, and gk ∈ R
|L|(Lk+1)A

2
max×1

is the cost vector for all abstract local state at the k-th
sensor. Specifically, [gk]κ(lBt ,ε(Qt,k,Ast,k,A

d
t,k))

= Adt,k+I[Qt,k =

0]wPC
s+I[Adt,k =Amax]wQ.

Proof. Please refer to Appendix C.

B. Scheduling with Approximate Value Function
Substituting the optimal value function W (S̃t+1) of

the problem in (19) with the approximate value function

WΠ(S̃t+1), the proposed scheduling policy in one frame (say

the t-th frame) given the global system state St can be obtained

from the following optimization problem.

P2 :
{
(s�t,k, τ

�
t,k, p

�
t,k)
}

k∈K =

argmin
(st,k,τt,k,pt,k)k∈K

∑
k∈K wP(τt,kpt,k + st,kC

s)

+ γ
∑

S̃t+1
WΠ(S̃t+1) Pr

[
S̃t+1

∣∣∣St, (st,k, τt,k, pt,k)k∈K
]
,

s.t. Constraints in (4), (8), (9).

Remark 1 (Predictive Scheduling). Note that the LoS path
is usually much better than the NLoS paths. If the LoS path
of one sensor (say the k-th sensor) is likely blocked soon,

the penalty of AoI outdatedness will start to incur. Thus, its
local value function WΠ

k (S̃t,k) could be large for large values
of AoI Adt,k. Hence, the problem P2 tends to schedule more
transmission resources to this sensor, so that its AoI can be
maintained at a low level.

C. Alternative Optimization Algorithm
Problem P2 is a mixed continuous and discrete optimization

problem with coupled variables {st,k}k∈K, {τt,k}k∈K and

{pt,k}k∈K. An alternative optimization algorithm is proposed

in Algorithm 1 to obtain the suboptimal solution.

Algorithm 1: Alternative optimization algorithm.

Input :
St: System state in the t-th frame

{WΠ
k (S̃t,k)}∀k,S̃t,k : Approximate local value

functions via Theorem 1

Output:
Ψ∞(St): Converged action in the t-th frame

1 n← 0, s
(0)
t,k ← sΠt,k, τ

(0)
t,k ← τΠt,k, d

(0)
t,k ← dΠt,k

2 while not converge do
3 n← n+ 1
4 for k ∈ K do in parallel
5 Solve s

(n)
t,k in P2.1(n, k) via comparison.

6 for k ∈ K do in parallel
7 Solve d

(n)
t,k in P2.2(n, k) via exhaustive search.

8 Solve {τ (n)t,k }k∈K in P2.3(n) via Lemma 3.

9 p
(n)
t,k = 1

Yt,k

[
2∧
(

d
(n)
t,kNb

τ
(n)
t,k W

)
− 1
]
, ∀k

10 return Ψ∞(St)← {(s∞t,k, τ∞t,k, p∞t,k)}k∈K
Instead of optimizing {st,k}k∈K, {τt,k}k∈K and {pt,k}k∈K,

we optimize {st,k}k∈K, {τt,k}k∈K and {dt,k}k∈K alterna-

tively, where dt,k denotes the number of transmission pack-

ets from the k-th sensor in the t-th frame. Let {s(n)t,k }k∈K,
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P2.1(n, k) : s
(n)
t,k = argmin

st,k∈{0,1}
wPst,kC

s+γ
∑

S̃t+1,k
WΠ

k (S̃t+1,k) Pr
[
S̃t+1,k

∣∣∣St,k, (st,k, τ
(n−1)
t,k , p

(n−1)
t,k )

]
(23)

P2.2(n, k) : d
(n)
t,k = argmin

dt,k: pt,k(dt,k)≤Pmax

wPτ
(n−1)
t,k pt,k(dt,k)+γ

∑
S̃t+1,k

WΠ
k (S̃t+1,k)Pr

[
S̃t+1,k

∣∣∣St,k,
(
s
(n)
t,k , τ

(n−1)
t,k , pt,k(dt,k)

)]
(24)

P2.3(n) :
{
τ
(n)
t,k

}
k∈K

= argmin
{τt,k}k∈K

∑
k∈K

τt,kpt,k(τt,k) s.t.
∑
k∈K

τt,k = TF, 0 ≤ τt,k ≤ TF, pt,k(τt,k) ≤ Pmax, ∀k ∈ K, (25)

{τ (n)t,k }k∈K and {d(n)t,k }k∈K be the correspondingly opti-

mized variables in the n-th iteration, respectively. Initial-

izing the actions with the reference policy Π (Line 1),

i.e., (s
(0)
t,k , τ

(0)
t,k , d

(0)
t,k) = (sΠt,k, τ

Π
t,k, d

Π
t,k), the entire procedure

of solving P2 consists of a number of iterations, and the

n-th iteration includes the sub-problems {P2.1(n, k)|∀k},
{P2.2(n, k)|∀k}, and P2.3(n) in (23), (24) and (25), respec-

tively (Line 4–8), where

pt,k(dt,k)=
1

Yt,k
[2

dt,kNb

τ
(n−1)
t,k

W−1], pt,k(τt,k)=
1

Yt,k
[2

d
(n)
t,k

Nb

τt,kW−1].

Notice that the originally coupled sampling decision s
(n)
t,k and

transmission packet number allocation d
(n)
t,k of all sensors are

decoupled given the transmission time allocation {τ (n)t,k }k∈K,

thus the complexity is significantly reduced. The optimal

solution of {P2.1(n, k)|∀k} can be derived by evaluating

the binary local sampling action for st,k = 0 and st,k = 1
and choosing the one with the smaller value of the ob-

jective function (Line 5). Similarly, the optimal solution of

{P2.2(n, k)|∀k} can be solved by one-dimensional search over

dt,k∈{0, 1,. . ., Qt,k} (Line 7).

Moreover, P2.3(n) is a convex optimization problem and

the optimal solution can be derived by the following lemma

(Line 8).

Lemma 3. The optimal solution of P2.3(n) is given by

τ
(n)
t,k =

dt,kNb

W
max

{
ln 2

1+W0

(Yt,kν�−1
e

) , 1

log2(1+PmaxYt,k)

}
,

where W0(·) denotes the principal branch of the Lambert W
function, and ν� denotes the optimal Lagrangian multiplier
for equality constraint (8) which can be solved by∑

k∈K
max

{
dt,kNb ln 2

W
[
1+W0

(Yt,kν�−1
e

)] ,
dt,kNb

W log2(1+PmaxYt,k)

}
−TF=0. (26)

Proof. Please refer to the Theorem 1 in [21] for the proof.

Because the left-hand-side (LHS) of (26) is non-increasing,

the bisection method can be used to solve ν�. Given d
(n)
t,k and

τ
(n)
t,k , the transmission power allocation in the n-th iteration,

denoted by p
(n)
t,k , can be derived analytically (Line 9).

Since the iterative optimization of the sub-problems

{P2.1(n, k)|∀k}, {P2.2(n, k)|∀k}, and P2.3(n) would lead

to a smaller or equal value of the objective function in P2, the

above iteration will always converge (Line 10).

D. Performance Bound and Time Complexity
Denote Ψ(n) : S̃t → {

s
(n)
t,k, τ

(n)
t,k, p

(n)
t,k

}
k∈K as the

scheduling policy obtained after n iterations, W̃Ψ(n)(S̃t)
as the corresponding value functions, and Ψ∞ : S̃t →{
s∞t,k, τ

∞
t,k, p

∞
t,k

}
k∈K as the scheduling policy after conver-

gence. The performance of Ψ∞ and Ψ(n) can be guaranteed

by the following lemma.

Lemma 4 (Performance Bound). The average discounted cost
of policies Ψ(n) and Ψ∞ can be bounded by

W (S̃t)≤WΨ∞
(S̃t)≤ . . .≤W̃Ψ(n)(S̃t)≤ . . .≤W̃Ψ(1)(S̃t)≤WΠ(S̃t).

Proof. Since W (S̃t) is the optimal value function, it is the

lower bound of value function of an arbitrary policy. The

proof of WΨ∞
(S̃t) ≤ . . . ≤ W̃Ψ(n)(S̃t) ≤ . . . ≤ W̃Ψ(1)(S̃t)

and W̃Ψ(1)(S̃t) ≤ WΠ(S̃t) resembles the proof of the policy

improvement property in Chapter II of [19].

For conventional value iteration method, the transmission

time and power shall be first discretized into τD and pD levels,

respectively. Then the cardinalities of the abstract state space

and action space can be denoted by |S̃|� |L|A2Kmax
∏

k∈K Lk

and |A|�(2τDpD)K , respectively. The time complexity of the

conventional value iteration is O(|S̃|2|A|) for each iteration.

On the other hand, the proposed scheme consists of two stages,

namely the evaluation of the approximate value function and

the alternative optimization algorithm. The time complexity of

the approximate value function is O(|S̃|[|L|A2max
∑

k∈K Lk]
3)

and the time complexity of the alternative optimization algo-

rithm is O(|S̃|∑k∈K Lk) for each iteration. Benefiting from

the analytical expressed approximate value function, a number

of iterations from the initial value function to the value

function of a roughly-good policy is prevented, and thus the

time complexity is essentially reduced.

V. SIMULATIONS AND DISCUSSIONS

In this section, the performance of the proposed algorithm is

demonstrated via simulations, where a number of benchmarks

are used in the comparison. We summarize the key findings

of our simulations as follows:

• Our proposed scheme can converge after only a few iter-

ations and reduce the average per-frame cost by 13.5%–

49.6% compared with the benchmarks.

2063

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 19,2024 at 02:45:05 UTC from IEEE Xplore.  Restrictions apply. 



sensor 1sensor 2sensor 3

sensor 4

sensor 5 sensor 6 sensor 7

sensor 8BS

blocker

t=1t=8

t=20

t=26

t=34

t=45

t=56

t=64

t=75 t=90

t=96

0 20

X [m]

0

20

Y
 [m

]

Fig. 2. Simulation scenario and an illustrative trajectory of the
blocker.

• Our proposed scheme can proactively keep the AoIs of

sensors with future channel degradation at a low level in

example traces, which intuitively verifies the benefits of ex-

ploiting mobile blocker detection in AoI-oriented scheduling

design.

• Our proposed scheme shows the better performance com-

pared to the benchmarks with robustness against the number

of sensors.

As illustrated in Fig. 2, we consider a 20m×20m square

room with walls serving as the reflectors of the NLoS paths

(M=4), where the BS is deployed at the center block of the

room and the locations of sensors are uniformly distributed

near the walls. The mobility of the human blocker with radius

rB = 0.3m follows a modified random walk. The probability

of staying in the same grid in next frame is 0.90, while the

probabilities of moving to one of the feasible neighboring

blocks in the blue region are equal. An illustrative blocker

trajectory is shown by arrows in Fig. 2. Other parameters are

summarized in Table III. We evaluate the proposed algorithms

with different numbers of iterations in solving P2, namely,

Ψ(1), Ψ(2), Ψ(3), Ψ∞, and compare them with the following

three benchmark policies, which are referred to as BM1,

BM2 and BM3, respectively. All the benchmarks adopt the

same sampling policy and transmission power allocation as the

reference policy, i.e., st,k = I[Qt,k =0] and pt,k =PΠ, while

the transmission time allocation is elaborated as follows.

BM 1 (Reference Policy). The transmission time allocation of
each sensor is proportional to the corresponding data volume
of sample at each sensor, i.e., τt,k =TFLk/

∑
k′∈K Lk′ .

BM 2 (Largest-AoI First). The sensor with the largest AoI at
the server, i.e., argmaxk A

d
t,k, is scheduled for transmission

sequentially, until transmission time of the frame is used up.

BM 3 (Dynamic Backpressure [23]). The sensor with the
largest product of buffer length and uplink capacity, i.e.,
argmaxk Qt,kRt,k, is scheduled for transmission sequentially,
until transmission time of the frame is used up.

BM1 corresponds to the reference policy we adopt in the

proposed scheme with fair allocation based on uploading

workload. BM2 selects UE greedily to mitigate the outdated-

ness AoI penalty. BM3 adopts a UE selection strategy based

on both queue length and uplink channel capacity.

Fig. 3(a) displays the cumulative distribution functions

(CDFs) of per-frame cost of the proposed scheduling scheme

as well as those of the three benchmarks, when the number

of sensors is K = 8. The step-shape curves are caused by

the outdated AoI penalty (whose weight is wQ = 100 in the

simulation). It can be observed that the proposed policy with

n = 1, denoted as Ψ(1), has a significantly better curve than

the reference policy (BM1). Moreover, the curves of Ψ(3) and

Ψ∞ are close, demonstrating that only a small number of

iterations are needed in the optimization of P2. BM2 allocates

all the transmission time to the sensors with the largest AoIs

at the server, which leads to the highest probability of per-

frame costs below 150 (one sensor with outdated AoI penalty

in average). However, the largest-AoI-first scheduling in BM2

may be stuck to the sensor whose LoS path is blocked, leading

to more outdated AoI penalty. It can be observed that com-

pared with BM3, BM2 has much lower probability when the

per-frame cost is below 250. The average per-frame costs are

129.3, 256.3, 203.5 and 149.5 for the proposed scheme Ψ∞

and the benchmarks respectively, indicating that the average

performance of the proposed scheme (cost reduction by 49.6%,

36.5% and 13.5%, respectively) is the best.

Fig. 3(b) sketches the bar chart of the four components of

per-frame cost. BM1 has the highest outdated AoI penalty,

because its scheduling is independent of the system state.

BM2 has the lowest AoI penalty, but consumes significantly

higher transmission energy than the proposed scheme. BM3

has the highest sampling energy consumption and thus highest

sampling frequency, because it tends to select the sensor with

high throughput. Hence, the proposed scheme achieves the best

balance between AoI and energy consumption.

The insights on blockage-predictive scheduling of the pro-

posed policy can be obtained in Fig. 4, which shows the

Parameter Symbol Value

Carrier frequency fc 60 GHz
# of sensors K 4,5,6,7,8

# of receive/transmit antenna elements NR,NT 64, 128

Path loss ρk,i

LoS: 32.5+20 log(fc)
+20 log(R) [22]

NLoS: 32.5+20 log(fc)
+20 log(R)+15

# of possible locations of the blocker |L| 24
Bandwidth W 400 MHz

Frame duration TF 10 ms
Packet size Nb 200 KB

Noise power spectral density N0 -174 dBm/Hz
Data volume Lk U(3, 5)

Threshold for outdated AoI Amax 10
Maximum transmission power Pmax 100 mW

Discount factor γ 0.98
Weights for energy consumption

and outdated AoI penalty
wP,wQ 10000, 100

Sampling energy consumption Cs 10−4 J

Transmission power of reference policy PΠ 50 mW

TABLE III. Configuration parameters of the simulation.
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Fig. 3. (a) CDF of the per-frame cost. (b) Average performance of the
AoI at the server, sampling energy, transmission energy and outdated
AoI penalty.

dynamics of the AoI at the 4-th sensor and the corresponding

AoI at the server. The trajectory of the blocker for this trace is

illustrated in Fig. 2. The LoS path between the BS and the 4-th

sensor is blocked since the 45-th frame. Compared with BM1,

the proposed policy can detect future channel degradation, and

keep the AoIs at the 4-th sensor and the BS at a low level

before the 45-th frame, which reduces the time duration with

outdated AoI at the server.
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Fig. 4. AoI dynamics of the 4-th sensor.

The average per-frame cost versus the number of sensors

is studied in Fig. 5. The average per-frame cost of the

proposed scheme is always lower than the benchmarks, which

verifies the better performance of the proposed scheme and its

robustness against the number of sensors.
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Fig. 5. Average per-frame cost versus the number of sensors.

VI. CONCLUSION

In this paper, we formulate the dynamic scheduling of

sampling and uploading in an mmWave-based WSN with

random human blockage as an infinite-horizon MDP with

discounted cost, where the weighted sum of average AoI

and system energy consumption is the minimization objective.

Since the system state space grows exponentially with respect

to the number of sensors, an approximate MDP solution

framework is proposed to address the curse of dimensional-

ity. In the proposed framework, the optimal value function

is approximated by an analytical expression derived from

a reference policy. The numerical evaluation of the value

function in conventional approximate MDP solutions can be

eliminated. Finally, the policy iteration based on analytical

value function is significantly more efficient than lookup-table-

based value functions in conventional solution frameworks.

Thus, the solution complexity is greatly reduced. Moreover,

the impact of random human blockage on future cost is pre-

dicted in the approximate value function, and hence, mitigated

in the scheduling of the current frame. In future work, we

shall consider low-complexity scheduling for multi-blocker

scenarios, where how to address the curse of dimensionality

caused by large location state space is challenging.

APPENDIX A: PROOF OF LEMMA 1
According to [24], with sufficient large NR and NT,

fR(φ)→ 1 and fT(θ)→ 1 if φ = 0 and θ = 0, otherwise

fR(φ)→ 0 and fT(θ)→ 0, where fR(φ)= |aHR(0)aR(φ)| and

fT(θ)= |aHT(0)aT(θ)|.
Hence, substituting (2) into (7), we can derive(

wt,k, ft,k
)
= argmax

aR(φq)∈W
aT(φp)∈F

E(αt,k,i)i∈M

∣∣∣∑
i∈M

Bt,k,i(l
B
t )αt,k,i

× fR(φk,i−φq)fT(θp−θk,i)
∣∣2 (27)

= argmax
aR(φk,i),aT(φk,i)

Bt,k,i(l
B
t )ρ−1k,i . (28)

Let i� = argmaxi Bt,k,i(l
B
t )ρ−1k,i , (28) can be written by

(wt,k, ft,k) = (aR(φk,i�), aT(φk,i�)). Then the baseband gain

can be represented by Yt,k(l
B
t )= |αt,k,i� |2/(N0W ).

Given αt,k,i� ∼ CN (0, ρ−1k,i�), |αt,k,i� |2 = (�[αt,k,i� ])
2+

(
[αt,k,i� ])
2 follows an exponential distribution, i.e.,

|αt,k,i� |2∼Exp(ρk,i�). Then Yt,k(l
B
t )∼Exp(ρk,i�N0W ) and

thus the CDF of Yt,k(l
B
t ) can be written by

Pr[Yt,k(l
B
t ) ≤ x] = 1− exp(−ρk,i�N0Wx). (29)

Therefore, the PMF of departure packet number is

Pr
[
DΠt,k =d

∣∣lBt ]=Pr
[
DΠt,k≤d+1

∣∣lBt ]−Pr
[
DΠt,k≤d

∣∣lBt ]
=Pr

[
Yt,k(l

B
t )≤ 2

(d+1)Nb
WτΠ

t,k −1

PΠ

]
−Pr

[
Yt,k(l

B
t )≤ 2

dNb
WτΠ

t,k −1

PΠ

]
.

APPENDIX B: PROOF OF LEMMA 2

In fact, M
(�)
k represents the transition probability matrix

of local abstract state eliminating lBt , i.e., (Qt,k, A
s
t,k, A

d
t,k),

conditioned on lBt+1=�. Then the derivation of (21) is straight-

forward. We have the following discussion on all possible

cases for M
(�)
k defined in Table II.

• Case 1 (Qt,k=0, 1≤Ast,k≤Amax, 1≤Adt,k≤Amax, Qt+1,k=0,

Ast+1,k=1, Adt+1,k=1): This means that sampling and trans-
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mission of all packets of the new sample are accomplished

with the probability of Lk departure packets.

• Case 2 (Qt,k=0, 1≤Ast,k≤Amax, 1≤Adt,k≤Amax, 1≤Qt+1,k

≤Lk, A
s
t+1,k=1, Adt+1,k=min{Adt,k+1, Amax}): This means

that sampling and transmission of (Lk−Qt+1,k) packets of

the new sample are accomplished with the probability of

(Lk−Qt+1,k) departure packets.

• Case 3 (1≤Qt,k≤Lk, 1≤Ast,k≤Amax, 1≤Adt,k≤Amax, Qt+1,k

=0, Ast+1,k=min{Ast,k+1, Amax}, Adt+1,k=min{Ast,k+1,
Amax}): This means that transmission of all remaining

Qt+1,k packets of the current sample is accomplished with

the probability of Qt+1,k departure packets.

• Case 4 (1≤Qt,k≤Lk, 1≤Ast,k≤Amax, 1≤Adt,k≤Amax, 1≤
Qt+1,k≤Qt,k, A

s
t+1,k=min{Ast,k+1, Amax}, Adt+1,k=min

{Adt,k+1, Amax}): This means that transmission of

(Qt,k−Qt+1,k) packets of the current sample is accomplished

with the probability of (Qt,k−Qt+1,k) departure packets.

APPENDIX C: PROOF OF THEOREM 1

The approximate value function is given by

WΠ(S̃t)= lim
T→∞

T∑
t=1

γt−1
[∑

k∈K

[
e
|L|(Lk+1)A

2
max

κ(lBt ,ε(Qt,k,Ast,k,A
d
t,k))

]T
Pt−1

k gk

+ wPTFP
Π
]
. (30)

Since the reference policy adopts constant transmission time

and power allocations, the per-frame cost for transmission

power consumption, and thus its discounted cumulative sum

corresponding to the second term in (22), results into a

constant. In fact, e
|L|(Lk+1)A

2
max

κ(lBt ,ε(Qt,k,Ast,k,A
d
t,k))

represents the proba-

bility vector for a deterministic local abstract state S̃t,k =
(lBt , Qt,k, A

s
t,k, A

d
t,k), Pk represents the transition probability

matrix, and the κ(lBt , ε(Qt,k, A
s
t,k, A

d
t,k))-th entry of gk repre-

sents the per-frame cost for sampling energy cost, and AoIs

and outdated AoI penalties at the server. Since the reference

policy samples only when the queue becomes empty, the per-

frame cost for sampling is counted only for Qt,k =0. There-

fore,
[
e
|L|(Lk+1)A

2
max

κ(lBt ,ε(Qt,k,Ast,k,A
d
t,k))

]T
Pt−1

k gk represents the expected

per-frame cost in the t-th frame. The derivation from (30) to

(22) resembles the proof in Appendix B(3) of [25].
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