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Introduction
Motivation:
1 UE rotation may cause significant SNR fluctuation, thus QoS degradation, in mmWave systems.
2 UE-embedded motion sensors enable predictive SNR fluctuation with statistical channel model.
3 This raises a new design issue of large-time-scale scheduling with non-stationary but predictable channel statistics.
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System Model
Network Description:
• Downlink transmission with one BS and K rotating UEs.
• Predictable UE orientation: UE orientation in future T frames can be

predicted by orientation prediction methods (e.g., constant angular veloc-
ity).

• Analog MIMO transceivers: each with a single RF chain and a limited-
FoV ULA.

• Finite buffer size: K downlink queues at the BS each with limited buffer
size Qmax and random arrival. Buffer overflow will lead to packet drop.

Cluster-based Channel Model:

Ht,k =

Ncl
k∑

i=1

Nray
k,i∑

`=1

αt,k,i,`︸ ︷︷ ︸
complex gain

aR(φt,k,i, )̀aHT(θt,k,i, )̀︸ ︷︷ ︸
array responses

ΛR(φt,k,i, )̀ΛT(θt,k,i, )̀︸ ︷︷ ︸
antenna pattens (w/ limited FoV)

Predictable Average SNR:
• With pre-learned quasi-static statistical channel parameters, the only non-

stationary parameter, cluster mean AoA φ̄t,k,i due to UE rotation, can be
predicted with constant angular velocity ωk,

φ̄t,k,i = φ̄1,k,i + (t− 1)ωkTF.

• Future average SNR can be predicted by

SNRt,k = EHt,k

Pt,k
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Problem Formulation
Finite-horizon MDP:
• Finite horizon (stages #): because the system can predict UE ori-

entation in T frames (one scheduling period).
• Per-frame cost:

gt
(
St,Ωt(St)

)
, wPPt︸ ︷︷ ︸

downlink power
consumption

+
∑
k∈K

(
Qt,k︸︷︷︸

queue
length

+wQI[Qt,k =Qmax]︸ ︷︷ ︸
packet-drop penalty

)

UE 1,1tQ

,2tQ

,t KQ

t t

,1tY

,t KY

td
tP UE 2

UE K

,2tY

BS

State

,1tA

,2tA

,t KA

,1tD

Policy

( , )t t t=

( ) ( , )t t t td P =

Dynamic Programming Problem:
• To minimize the weighted sum of downlink energy consumption,

queuing delay and packet-drop rate in future T frames.

P1 : Ω?,{Ω?
t |∀t}=arg min

Ω
EΩ
A,Y
[ T∑

t=1

gt
(
St,Ωt(St)

)∣∣S1

]
s.t. 0 ≤ Pt ≤ Pmax, ∀t.

Proposed Solution
Low-complexity Suboptimal Solution Framework:

Base policy

Scheduling with 

value function 

of base policy

Decompose P2 into K sub-problems

Approximate the value function of optimal policy 

by                               , then perform one-step policy iteration

Evaluate its value function                                analytically

Define the base policy Π           

Solve each sub-problem, then derive the proposed low-

complexity policy Ψ

D D{ ( ) | , }t t tW t 
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• Base Policy Π: UE selection based on backpressure algorithm,
and constant downlink transmission power.

• One-step policy improvement:
P2 :Ψt(St) = arg min

Ωt(St)

{
gt
(
St,Ωt(St)

)
+WΠ

t

(
QD

t (St,Ωt)
)}
,

Advantages:
• Low-complexity: analytical expressed value function of base pol-

icy, and one-step value iteration.
• Offline base policy evaluation with reduced state space.
• Distributed online scheduling with small signaling overhead.
• Performance Guarantee: lower bounded by base policy.

Simulation Results
How it Works:
an Illustrative Run
• Instantaneous SNR and queue dy-

namics of a static UE (k=1) and a
rotating UE (k=5).

• The proposed scheme can predic-
tively schedule more transmission
opportunities to a rotating UE (k=5)
about 20 frames before its SNR de-
grades, so that the future packet
drop rate can be significantly re-
duced.

• Benchmarks:
Dynamic BackPressure (DBP)
Largest-Rate First (LRF)
Longest-Queue First (LQF)
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CDF of per-frame cost:
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