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Introduction Problem Formulation Proposed Solution
Motivation: Finite-horizon MDP: Low-complexity Suboptimal Solution Framework:
® UE rotation may cause significant SNR fluctuation, thus QoS degradation, in mmWave systems. * Finite horizon (stages #): because the system can predict UE ori-
® UE-embedded motion sensors enable predictive SNR fluctuation with statistical channel model. entation in I’ frames (one scheduling period). Define the base policy I1
® This raises a new design 1ssue of large-time-scale scheduling with non-stationary but predictable channel statistics. e Per-frame cost: Base policy ¢
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e Base Policy II: UE selection based on backpressure algorithm,
and constant downlink transmission power.
e One-step policy improvement:

P2 :0,(S,) = argmin { g (S, 2(S:)) + W (QP (S, 1)) 1,

System Model

Network Description: ~ Queues with =777 Dynamic Programming Problem: Q;(S:)
e Downlink transmission with one BS and K rotating UEs. PacketW“ffer S'Ze_\_» ke e To minimize the weighted sum of downlink energy consumption, Advantages:
 Predictable UE orientation: UE orientation in future 7' frames can be gy ival T - departure queuing delay and packet-drop rate in future 7" frames.  Low-complexity: analytical expressed value function of base pol-
predicted by orientation prediction methods (e.g., constant angular veloc- T icy, and one-step value iteration.
ity). /BS A< P1: Q*={Q;|Vt} =arg min Ef}\,y [ Z 9t (S, (Sy) ‘51] o Offline base policy evaluation with reduced state space.
« Analog MIMO transceivers: each with a single RF chain and a limited- : e ; T Rotation . t=1 * Distributed online scheduling with small signaling overhead.
FoV ULA. | LRF Chain = —,@—4 | UET S s.t. 0< P < Phax, Vt.  Performance Guarantee: lower bounded by base policy.
* Finite buffer size: K downlink queues at the BS each with limited buffer : D
size (Qmax and random arrival. Buffer overflow will lead to packet drop. - ] Simulation Results
Cluster-based Channel Model:
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