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Abstract—In this paper, an integrated passive sensing and
communication system working in 60 GHz band is elaborated,
and the sensing performance is investigated in an application of
hand gesture recognition. Specifically, in this integrated system,
there are two radio frequency (RF) chains at the receiver and
one at the transmitter. Each RF chain is connected with one
phased array for analog beamforming. To facilitate simultaneous
sensing and communication, the transmitter delivers one stream
of information-bearing signals via two beam lobes, one is aligned
with the main signal propagation path and the other is directed
to the sensing target. Signals from the two lobes are received by
the two RF chains at the receiver, respectively. By cross ambiguity
coherent processing, the time-Doppler spectrograms of hand
gestures can be obtained. Relying on the passive sensing system, a
dataset of received signals, where three types of hand gestures are
sensed, is collected by using Line-of-Sight (LoS) and Non-Line-
of-Sight (NLoS) paths as the reference channel respectively. Then
a neural network is trained by the dataset for motion detection.
It is shown that the classification accuracy rate is high as long
as sufficient sensing time is assured. Finally, an empirical model
characterizing the relation between the classification accuracy
and sensing duration is derived analytically.

I. INTRODUCTION

Integrated Sensing and Communication (ISAC) is a promis-
ing technology for the sixth generation cellular system, where
the sensing capability has potential to assist the wireless
communications and provide new services to subscribers [1],
[2]. Compared with sensing of vehicle’s velocity and position,
human motion sensing is usually more challenging, as the
micro-Doppler effect should be captured for classification.
Generally, there are three main approaches of wireless human
motion sensing in existing ISAC testbed implementations, in-
cluding wireless sensing via dedicated waves (e.g., Frequency-
Modulated Continuous Wave, FMCW), wireless sensing via
channel state information (CSI), and passive sensing.

There have been a significant number of works using radar
for human motion recognition. For example, in [3], the authors
proposed the first coarse multi-person gesture tracking system
with FMCW radar, where the direction of a pointing hand can
be identified. In [4], Google developed a commercial FMCW-
based gesture recognition system, namely the Soli project. In
addition, it was shown in [5] that the motion of human skeleton
could be reconstructed with recent advances in deep learning.
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Compared with integrated radar and communication sys-
tems where dedicated time or frequency resources should
be reserved for sensing, there are a number of research
works detecting human motion via channel state information
(CSI), where the channel sensing does not raise overhead on
wireless resource. Particularly, the micro-Doppler effect can
also be observed from the variation of the CSI. Moreover, the
location of sensing target can be estimated via CSI if multi-
antennas and multi-carrier technologies are adopted in the
communication system. For example, the CSI was exploited
to detect human motions behind the wall in [6]. In [7], the
authors explored CSI histograms to recognize daily activities,
such as cooking in a kitchen and walking from one room
to another, based on empirical study. In [8], the authors
proposed theoretical models to derive the relation between CSI
and human activities. Recent work [9] jointly estimated the
Angle-of-Arrival (AoA), Time-of-Flight (ToF), and Doppler-
Frequency-Shift (DFS) for human localization and tracking.

Despite low overhead, CSI-based sensing methods are sen-
sitive to the frequency offset between the transmitter and
receiver, which might be a severe problem in millimeter wave
(mmWave) band. Although there are methods to eliminate the
issue of frequency offset [8], the performance relies on the
propagation path without Doppler shift. On the other hand,
passive radar is a sensing approach insensitive to the frequency
offset. In [10], passive sensing via WiFi signals was adopted
to detect the moving personnel. It was further shown in [11]
that human breathing behind the wall could be detected via
passive sensing. Moreover, the CSI-based sensing and passive
sensing were compared in [12]. It was shown that CSI-based
system performed better in Line-of-Sight (LoS) scenarios,
while passive radar system performed better in Non-Line-of-
Sight (NLoS) scenarios.

Although there have been a number of testbeds and experi-
ment results on the passive sensing in sub-6 GHz band, there
is still no passive sensing testbed in mmWave band. Note that
communications in mmWave band has already been consid-
ered in the 5G cellular system and IEEE 802.11ay systems, it
is natural to extend the passive sensing technique to mmWave
band. Moreover, because of the smaller wavelength, sensing
in mmWave band would have higher Doppler resolution.

In this paper, 60 GHz mmWave communication and passive
sensing system implementation is elaborated. The 16-antenna
phased arrays are deployed at both the transmitter and receiver,
so that the mmWave signal transmission can be directed to the
sensing target to suppress the interference from LoS path. The
performance of the above system is investigated via the ex-



emplary application of hand gesture recognition. Specifically,
a dataset of received signals of three gestures is provided and
the time-Doppler spectrograms are generated from the dataset.
Then Residual Network (ResNet) is trained for classification.
Note that the accuracy of classification generally increases
with longer sensing duration, as more dynamics of micro-
Doppler effects can be captured. Their relation is first tested
numerically via ResNet, and then approximated via an analyti-
cal expression. It is usually difficult to analyze the performance
of ResNet via the statistical learning theory [13], the above
study provides an empirical model of sensing and learning
performance evaluation for ISAC system with a particular
classification application.

The remainder of this paper is organized as follows. The
model of mmWave passive sensing and communication system
is introduced in Section II. The signal processing algorithm
for passive sensing and the method of classification accuracy
approximation are elaborated in Section III and Section IV,
respectively. In Section V, the system implementation is
elaborated and the experiment results are demonstrated and
discussed. Finally, the conclusion is drawn in Section VI.

II. SYSTEM MODEL

An integrated passive sensing and communication system
based on Software-Defined Radio (SDR) and mmWave phased
array is illustrated in Fig. 1, which consists of one transmitter
and one receiver. Specifically, there is at least one radio
frequency (RF) chain at the transmitter and two RF chains at
the receiver respectively. Each RF chain is connected with one
phased array with N antenna elements. In order to facilitate
simultaneous communication and sensing, both the transmitter
and receiver should first estimate the AoDs and AoAs of
signal propagation paths and the directions of the sensing
target, respectively. In this paper, it is assumed that this
angular domain information has already been obtained via the
existing approaches [14]. Hence, the transmitter delivers the
information-bearing signals to the receiver by aligning one
transmission lobe to static propagation path without Doppler
frequency; Meanwhile, it also splits another lobe towards the
target human. This can be achieved by separating the N an-
tenna elements of the phased array into two groups: one group
with Nd elements forms the lobe for data communication, and
the remaining Ns = N −Nd elements form the other lobe for
sensing. As illustrated in Fig. 1, the two paths are usually
referred to as the reference channel and surveillance channel,
respectively. At the receiver, one phased array is used to
receive the signal from the reference channel, while the other
one is used to collect the echo signal from the surveillance
channel.

Specifically, let s(t) be the information-bearing signal gen-
erated at the transmitter, the received signals via the reference
and surveillance lobes can be written as

yr(t) =

Lr∑
i=1

αirs(t− τ ir)e−j2π∆t + nr(t) (1)

Fig. 1. Illustration of the integrated communication and passive sensing
system.

and

ys(t) =

Ls∑
i=1

αiss(t− τ is)e−j2πfite−j2π∆t + ns(t), (2)

respectively. In (1), Lr denotes the number of resolvable paths
received by the RF chain for the reference channel, αir and τ ir
denote the gain and delay of the i-th path respectively, ∆ is the
frequency offset between the transmitter and the receiver, and
nr(t) is the noise. Similarly in (2), Ls denotes the number of
resolvable paths received by the RF chain for the surveillance
channel, αis, τ

i
s and fi denote the gain, delay and Doppler

shift of the i-th path respectively. As a remark notice that
the LoS path or NLoS path via static reflectors is selected as
the reference channel, so that there is no Doppler shift in (1).
Moreover, with highly directional beams at both the transmitter
and the receiver, there is usually one dominant path in yr(t).
Hence, (1) can be rewritten as

yr(t) = α1
rs(t− τ1

r )e−j2π∆t + ñr(t), (3)

where received signals from other paths are merged into the
noise ñr(t).

III. SIGNAL PROCESSING OF PASSIVE SENSING

Given the received signals from reference channel and
surveillance channel, the Doppler shifts raised by human
motion, denoted as {fi|i = 1, . . . , Ls}, can be estimated via
the following cross ambiguity function,

R(τ, f) =

∫ Tw

0

ys(t)y
†
r(t− τ)ej2πftdt, (4)

where (.)† denotes the complex conjugate, and Tw is the
coherent integration time (CIT). It can be observed that a local
peak value of R(τ, f) can be achieved when τ and f match
the delay differences and Doppler shifts between yd(t) and
ys(t).

Note that in the scenario of human motion sensing, the
number of paths, path delays and Doppler shifts, i.e., Ls, τ is



Fig. 2. Training procedure for motion detection.

and fi in (2), are all time varying. The calculation of cross
ambiguity function over the CIT as (4) will mix the Doppler
shits of different time instances. Similar to the works on sub-6
GHz band [12], [15], a sliding window with length of CIT is
applied on the above cross ambiguity function to generate the
time-Doppler spectrogram,

R̃(f, t) = max
τ

∫ t+Tw

t

ys(x)y†r(x− τ)ej2πfxdx, (5)

where Tw is the length of sliding window. Note that larger Tw
will lead to better Doppler resolution, but mixture of time-
varying Doppler shifts and higher computation complexity.
Since we focus on the feature extraction of Doppler shifts
in this work, the delay τ is maximized in (5).

In this paper, the sensing signals for different hand gestures
are collected. To classify the gestures according to the time-
Doppler spectrogram, a type of ResNet, namely ResNet-
18 [16], is adopted, as illustrated in Fig. 2. The input of
the ResNet is the time-Doppler spectrogram obtained in (5),
and its output is the classified gesture category. The ResNet
includes eight residual blocks and one fully connected layer.
Each residual block contains two convolutional layers, two
batch normalization layers, and two ReLU layers.

IV. CLASSIFICATION ACCURACY MODEL

It is of significant interests to investigate the relation be-
tween motion classification accuracy, denoted as ψ, and sens-
ing duration T in ISAC scheduler design. Note that it is usually
difficult to investigate the performance of ResNet analytically,
the approximation method proposed in [17], [18] is adopt in
this paper. Let ψi (i = 1, 2, ..., Q) be the tested classification
accuracy with sensing durations Ti (i = 1, 2, ..., Q), respec-
tively. The relation between ψ and T can be approximated via
the following expression,

Ψ = γ − αT−β , (6)

Fig. 3. Block diagram of system implementation.

where γ, α, and β are the tuning parameters. The values of
γ, α and β can be obtained via the following optimization
problem,

arg max
γ,α,β

1

Q

Q∑
i=1

ψi − (γ − αT−βi ). (7)

V. EXPERIMENTS

A. Implementation

The overall system diagram is illustrated in Fig. 3. At the
transmitter, one NI USRP-2954R [19] is adopted to generate
an intermediate frequency (IF) signal centered at 500 MHz,
which is further upconverted to 60 GHz and transmitted by
one Sivers 60 GHz phased array [20]. At the receiver, two
phased arrays are connected with one USRP to receive the
signals from the reference channel and surveillance channel
respectively. All the phased arrays are controlled by laptops,
so they can switch beams collaboratively.

The transmission signal s(t) consists of a training sequence
with a duration of 16 us, followed by OFDM-modulated
data payload with a duration of 200 us. From the training
sequence, the CSI of surveillance channel can also be obtained.
Hence the time-Doppler spectrogram generated from CSI is
also obtained for comparison. As a remark notice, it is not
necessary for the receiver to estimate the CSI, if only passive
sensing is considered.

As illustrated in Fig. 4, two scenarios of passive sensing
are considered in the experiment, namely LoS and NLoS
scenarios. In the LoS scenario, the LoS path between the
transmitter and receiver is considered as the reference channel;
Whereas, the NLoS path via wall reflection is used as the
reference channel in the NLoS scenario. Since the LoS may
be blocked frequently in practice, sensing robustness can be
enhanced by switching to NLoS paths as the reference channel.

There are three types of gestures to be sensed in the
experiment, including pushing hand, thumb adduction, and
rubbing fingers. Each hand gesture is sampled via the pas-
sive sensing system for 100 times in both LoS and NLoS
scenarios, so that a dataset is obtained. In each sample, the
information-bearing signal s(t) is transmitted for 9000 times.
For ambiguity processing, the window duration is Tw = 0.1
s.



Fig. 4. Experiment Layout.

B. Time-Doppler Spectrograms

The examples of time-Doppler spectrogram for the three
gestures in LoS scenario are illustrated in Fig. 5(a)(c)(e). It can
be observed that the three gestures have significantly different
patterns of time-Doppler spectrograms. For example, pushing
hand leads to smooth variation of Doppler frequency between
positive and negative peaks, while thumb adduction leads
to sharp impulses of Doppler frequency. The peak Doppler
frequencies of all three gestures are different. For example,
the Doppler frequency generated by rubbing finger is less
significant compared with the other two gestures. This is
because of the lower amplitude of finger motion. Hence, it
is feasible to differentiate the three gestures via their time-
Doppler spectrograms. Moreover, the zero Doppler frequency
component in the spectrogram demonstrates the existence of
static scatters in the surveillance channel.

The examples of time-Doppler spectrogram in NLoS sce-
nario are illustrated in Fig. 5(b)(d)(f). Because the NLoS signal
is weaker than that in LoS scenario, the Doppler frequency
illustrated in NLoS scenario is weaker than that in LoS
scenario in general. However, it is still sufficiently clear to
distinguish the three different gestures. This demonstrates the
feasibility of using NLoS path as the reference channel. Note
that the NLoS reference channel is helpful especially when
the LoS path is blocked or the sensing target is close to the
LoS path.

In Fig. 6, the time-Doppler spectrograms of CSI of the
surveillance channel are illustrated for comparison. As a
remark notice that the estimation of surveillance channel is
necessary to generate Fig. 6. However, the frame synchro-
nization and channel estimation are not required in passive
sensing. Since the transmitter and the receiver are not well syn-
chronized, we only show the spectrogram of CSI’s magnitude,
where the carrier frequency offset between the transmitter and
receiver can be eliminated as explained in [8]. Compared with
the spectrograms in Fig. 5, the spectrogram of CSI’s magnitude
is different in the following aspects: (1) It only has non-
negative Doppler frequency components; (2) It consists of not
only the actual Doppler frequencies of the prorogation paths in
surveillance channel, but also their mutual couplings [8]. The
latter effect can be observed by comparing the spectrograms
in Fig. 5(a) and Fig. 6(a), where Doppler frequencies due to

(a) (b)

(c) (d)

(e) (f)
Fig. 5. Spectrograms obtained from LoS scenario: (a) pushing hand, (c) thumb
adduction, (e) rubbing finger, and from NLoS scenario: (b) pushing hand, (d)
thumb adduction, (f) rubbing finger.

mutual coupling can be found in Fig. 6(a). Moreover, the
spectrogram of CSI’s magnitude relies on the existence of
static propagation path, as elaborated in [12]. When the static
propagation path is weak, the spectrogram may not be able to
show the correct Doppler frequency, which can be observed
in Fig. 6(d) and Fig. 6(f).

C. Motion Detection

In order to classify the three gestures via the ResNet, we
train the network with 150 samples (50 samples per gesture)
and the mini-batch size of 16. The remaining samples are
used as the test set. The classification results are shown in
Fig. 7. With a sensing duration T = 2 s, the overall accuracy
of NLoS scenario is 94%, where the classification accuracy
of pushing hand is 100%. This is because the spectrogram
of pushing hand is distinct from those of thumb adduction
and rubbing finger. Moreover, the classification accuracies of
thumb adduction and rubbing finger are also above 90%, which
demonstrates good performance of gesture recognition.

The classification accuracy versus the sensing duration is
illustrated in Fig. 8. It can be observed that the classification
accuracy increases with respect to the length of sensing time.
This is because longer sensing time could capture more dy-
namics in micro-Doppler effect, and thus better performance.

According to Section IV, it can be calculated that the
optimal values of γ, α and β for classification accuracy
approximation are 1.107, 0.0999 and 0.7907 respectively, and
the corresponding curve is also illustrated in Fig. 8.



(a) (b)

(c) (d)

(e) (f)
Fig. 6. CSI spectrograms obtained from LoS scenario: (a) pushing hand, (c)
thumb adduction, (e) rubbing finger, and from NLoS scenario: (b) pushing
hand, (d) thumb adduction, (f) rubbing finger.

Fig. 7. Classification matrix.

VI. CONCLUSION

In this letter, an integrated passive sensing and communi-
cation system in 60 GHz band is elaborated, where phased
arrays are deployed at both the transmitter and receiver for
beamforming to the reference channel and surveillance chan-
nel. To demonstrate the performance of this system in motion
detection, three types of gestures are made in the surveillance
channel and a dataset of received signals is collected via
the above system. Then the ResNet for gesture classification
is trained by the dataset. It is shown by experiments that
passive sensing in 60 GHz has a good resolution on the micro-
Doppler effect of hand gestures as the classification accuracy
is greater than 90%. It is also robust to link blockage as good

Fig. 8. Classification accuracy versus the sensing time.

classification accuracy can be achieved even the NLoS path is
used as the reference channel. Finally, an empirical model of
classification accuracy is derived from the experiment results
via curve fitting.
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