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Abstract—Millimeter wave (MmWave) has been regarded as a
promising technology to support high-capacity communications
in 5G era. However, its high-layer performance such as latency
and packet drop rate in the long term highly depends on resource
allocation because mmWave channel suffers significant fluctua-
tion with rotating users due to mmWave sparse channel property
and limited field-of-view (FoV) of antenna arrays. In this paper,
downlink transmission scheduling considering rotation of user
equipments (UE) and limited antenna FoV in an mmWave system
is optimized via a novel approximate Markov decision process
(MDP) method. Specifically, we consider the joint downlink UE
selection and power allocation in a number of frames where fu-
ture orientations of rotating UEs can be predicted via embedded
motion sensors. The problem is formulated as a finite-horizon
MDP with non-stationary state transition probabilities. A novel
low-complexity solution framework is proposed via one iteration
step over a base policy whose average future cost can be predicted
with analytical expressions. It is demonstrated by simulations
that compared with existing benchmarks, the proposed scheme
can schedule the downlink transmission and suppress the packet
drop rate efficiently in non-stationary mmWave links.

I. INTRODUCTION

Millimeter wave (MmWave) communications is one of the

key technologies in 5G and beyond systems [1]. In order

to achieve desired signal-to-noise ratio (SNR) and high data

rate, phased arrays with highly directional beams are adopted

to overcome huge pathloss. However, because of the sparse

propagation paths in mmWave channel between the base

station (BS) and user equipments (UEs), pencil-shaped beams

and limited field-of-view (FoV) of antenna arrays, UE mobility

especially rotation will cause significant SNR fluctuation [2].

Ignorance of such SNR fluctuation may lead to severe high-

layer performance degradation such as large latency, buffer

overflow and packet drop. Fortunately, exploiting statistical

channel model and motion information measured from embed-

ded motion sensors at the UEs makes future SNR fluctuation

predictable. This raises a new design issue of joint schedul-

ing in a large time-scale with non-stationary but predictable

channel statistics caused by UE rotation.

There has been a number of works considering resource

allocation in mmWave MIMO systems either within channel

coherent time [3] or in a larger time-scale with stationary chan-

nel statistics [4]–[7]. Scheduling in the former scenario leads
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to deterministic optimization problems, and infinite-horizon

Markov decision process (MDP) or Lyapunov optimization is

usually applied for the latter scenario. However, both methods

are not applicable for large-time-scale scheduling with non-

stationary channel statistics. Scheduling over non-stationary

channel statistics with prediction of future channel statistics

shall be addressed. For example, the authors in [8] proposed

an adaptive design for beam alignment, data transmission

and handover by exploiting vehicle mobility in mmWave

vehicular networks. In [9], [10], predictive beamforming is

investigated by sensing vehicle mobility with radar to improve

the efficiency of resource allocation. However, these works

focus on vehicles driving along straight lanes considering only

translation while UE rotation may raise more stringent re-

quirement [2]. Moreover, current works investigating temporal

correlations of angle of departure (AoD) and angle of arrival

(AoA) [11] or exploiting motion sensors to capture device

rotation [2], [12] to assist beam alignment neglect the effect

of rapid SNR fluctuation to high-layer performance.

Channel fluctuation due to limited antenna FoV and UE

rotation shall be considered in mmWave scheduling. Fortu-

nately, future UE orientation can be predicted according to

current angular velocity or angular acceleration measured by

motion sensors [13], [14] or integrated sensing and com-

munications (ISAC) techniques [15]. Moreover, due to the

small-scale fading, it might not be efficient to determine

all the transmission parameters in a large time-scale at its

beginning as in [8]–[10]. Instead, dynamic programming might

be a better framework to address the predictive scheduling

algorithm design with random channel fading. In this paper,

we consider the downlink scheduling with UE rotation where

the angular velocity can be measured by motion sensors.

In this paper, we would like to shed some light on the

predictive transmission scheduling in mmWave systems with

channel fluctuation due to UE rotation and limited antenna

FoV. We utilize the motion sensors embedded in UEs to

track the orientation of phased arrays. Moreover, by exploiting

temporal correlations of mmWave channel, the non-stationary

channel statistics can be predicted. We formulate the delay-

aware transmission scheduling with non-stationary mmWave

channel statistics as a finite-horizon MDP. Finally, a low-

complexity approximate MDP solution framework, applying

one iteration step over analytically approximated value func-

tion, is proposed to reduce the computational complexity.
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To the best of our knowledge, this is the first paper on

mmWave queue-aware scheduling in a large time-scale with

consideration of UE rotation.

II. SYSTEM MODEL

A. mmWave System with UE Rotation

We consider the downlink transmission in an mmWave

communication system with one BS and K UEs, where the set

of UEs is denoted by K� {1, 2, . . . ,K}. The analog MIMO

transceiver with a single radio frequency (RF) chain and a

half-wavelength uniform linear phased array (ULA) is adopted

at both the BS and UEs. The linear phased arrays at the BS

and UEs are with NT and NR antenna elements, respectively.

Hence, analog precoder and combiners can be adopted at the

BS and UEs respectively to enhance the receiving SNR. For

elaboration convenience, we consider the mmWave communi-

cation in a two-dimensional plane as illustrated in Fig. 1(a).

We focus on mmWave communication scenarios for UEs

with rotation but no translation, e.g., playing games with

virtual reality (VR) headsets or watching videos when sitting

on a rotating chair. Due to UE rotation and limited antenna

FoVs, channel statistics such as the number of in-FoV signal

scatterers and their directions with respect to the phased arrays

will change over time. Fortunately, embedded motion sensors

such as magnetometers and gyroscopes are able to periodically

detect the orientation and rotation of UEs, respectively [2].

Moreover, future UE orientations can be predicted by current

angular velocity [13]. With the direction knowledge of scat-

terers and phased arrays, the channel statistics in the future

can also be predicted to assist predictive scheduling by jointly

considering current and future transmission costs.

Specifically, the transmission time is organized by frames,

and the wireless channel is assumed to be quasi-static within

one frame. UEs are rotating with predictable angular velocities

in a number of frames. The period during which all the UEs are

rotating with predictable angular velocities is referred to as one

scheduling period consisting of T frames. For the elaboration

convenience, we assume that all UEs are predicted to rotate

with constant angular velocity as in [14], [16] in a scheduling

period. We shall focus on the joint UE selection and power

allocation within one scheduling period.

In the considered scheduling period, the angular velocity

of the k-th UE is denoted as ωk. The boresight direction

of the k-th UE in the 1-st frame of the scheduling period

is denoted as n1,k, and the boresight direction of the BS’s

array is denoted as nBS . Then the rotation angle during the

(t− 1) frames and the boresight direction of the k-th UE

in the t-th frame can be predicted as Δφt,k � (t−1)ωkTF

and nt,k =

[
cos (Δφt,k) −sin (Δφt,k)
sin (Δφt,k) cos (Δφt,k)

]
n1,k, respectively,

where t≤T and TF denotes the frame duration.

B. Channel Model

The extended Saleh-Valenzuela channel model illustrated

in Fig. 1(b) is adopted. Specifically, there are N cl
k quasi-static

scattering clusters in the propagation channel from the BS to
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Fig. 1. Illustration of (a) system model and (b) channel model.

the k-th UE, and N ray
k,i propagation paths in the i-th cluster.

For the exposition convenience, the i-th cluster in the channel

between the BS and the k-th UE is referred to as the (k, i)-th
cluster, and the �-th path of the (k, i)-th cluster is referred

to as the (k, i, �)-th path. Denoting the AoA and AoD of

the (k, i, �)-th path in the t-th frame as φt,k,i,� and θt,k,i,�
respectively, the channel matrix from the BS to the k-th UE

in the t-th frame Ht,k∈C
NR×NT can be represented by

Ht,k =
∑Ncl

k
i=1

∑Nray
k,i

�=1 αt,k,i,�aR(φt,k,i,�)a
H
T(θt,k,i,�)

× ΛR(φt,k,i,�)ΛT(θt,k,i,�), (1)

where αt,k,i,� is the instantaneous complex gain of the

(k, i, �)-th path in the t-th frame, ΛR(φt,k,i,�) and ΛT(θt,k,i,�)
refer to the receiving and transmission antenna gains

at φt,k,i,� and θt,k,i,� respectively, aR and aT repre-

sent the array response vectors of the ULAs at UEs

and the BS, which can be expressed by aR(φ) =
1√
NR

[
1, e−jπ sin(φ), . . . , e−jπ(NR−1) sin(φ)

]T
, and aT(θ) =

1√
NT

[
1, e−jπ sin(θ), . . . , e−jπ(NT−1) sin(θ)

]T
, respectively. The

antenna patterns are modeled as identical and ideal sectored,

hence,

ΛR(φ)=

{
1 φ∈ [φmin, φmax]

0 otherwise
,ΛT(θ)=

{
1 θ∈ [θmin, θmax]

0 otherwise
.

Due to the limited FoVs of receiving antennas, i.e., ΛR, the

phased array can not capture all propagation paths in 360◦

azimuth. Thus, the in-FoV scattering clusters may vary during

UE rotation. For example, the paths via the scattering cluster

represented by black square in Fig. 1(b) may be out of the

FoV in a few frames when the k-th UE is rotating clockwise.

The instantaneous gains {αt,k,i,�}, AoAs {φt,k,i,�} and

AoDs {θt,k,i,�} are drawn from independent distributions in

each frame. Specifically, αt,k,i,� follows the complex Gaussian

distribution with zero mean and variance σ2
α;k,i. The angular

distribution of propagation paths φt,k,i,� and θk,i,� follow the

truncated Laplacian distributions with cluster means φ̄t,k,i and
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θ̄k,i, and variances σ2
φ;k,i and σ2

θ;k,i respectively as in [17]. Due

to UE rotation, the boresight directions of their phased arrays

change in each frame. Since the scattering clusters are quasi-

static, the AoA means of the (k, i)-th cluster in one scheduling

period satisfy the following temporal correlation,

φ̄t,k,i = φ̄1,k,i +Δφt,k, ∀t, k, i. (2)

As a result, the channel statistics (distribution of Ht,k) are

non-stationary in one scheduling period, due to the limited

FoVs at the UEs and time-varying AoA cluster means φ̄t,k,i.

However, with the AoA cluster means and the angular velocity

of the k-th UE in the 1-st frame, i.e., {φ̄1,k,i|∀i} and ωk, the

AoA cluster means of all clusters in the t-th frame can be

predicted according to (2).

For the elaboration convenience, we define the statistical

channel state information (SCSI) as the tuple of parameters

sufficiently characterizing the distribution of channel matrix

in (1) as follows.

Definition 1. The SCSI in t-th frame is defined by ISCSI
t �

(ISCSI
sta ,{φ̄t,k,i|∀k, i}), where ISCSI

sta �({N cl
k |∀k},{N ray

k,i |∀k, i},
{σ2

α;k,i|∀k, i},{θ̄k,i|∀k, i},{σ2
θ;k,i|∀k, i},{σ2

φ;k,i|∀k, i}) is the
tuple of quasi-static channel statistical parameters.

With SCSI in the 1-st frame ISCSI
1 and {ωk} measured in

the 1-st frame, the SCSI and thus the distribution of Ht,k of

all the frames within the scheduling period can be predicted

according to the statistical channel model in (1).

C. Sensing-based Beam Alignment

Due to the single RF chain at the BS, one UE is selected

for downlink transmission in each frame. Let wt,k ∈ C
NR×1

and ft,k ∈C
NT×1 be the analog combiner at the k-th UE and

the analog precoder at the BS in the t-th frame respectively

if the k-th UE is selected. In practice, wt,k and ft,k are

selected from the pre-defined finite codebooks wt,k ∈ W �{
aR(φq)

∣∣q = 1, 2, . . . , NR

}
and ft,k ∈ F �

{
aT(θp)

∣∣p =

1, 2, . . . , NT

}
, respectively, where φq = arcsin

( 2(q−1)
NR

− 1
)

and θp = arcsin
( 2(p−1)

NT
− 1

)
. Hence, the spectral efficiency

achieved by the k-th UE in the t-th frame is given by

Rt,k=log2
(
1+

Pt,kYt,k

N0W

)
, where Pt,k is the transmission power

of the BS, Yt,k�
∣∣wH

t,kHt,kft,k
∣∣2 is the channel power gain in

baseband, N0 is the noise power spectral density, and W is

the bandwidth.

Instead of beamforming with instantaneous CSI feedback

which raises significant overhead, we exploit the SCSI pre-

diction and adopt the following statistical beam alignment

scheme, which maximizes the average baseband SNR without

instantaneous CSI feedback.

Scheme 1 (SCSI-Based Beam Alignment). Given ISCSI
1 and

{ωk}, the analog combiner and precoder for the k-th UE in the
t-th frame are selected by wt,k=aR(φq†t

) and ft,k=aT(θp†
t
),

respectively, where (q†t , p
†
t) is given by (3).

Since the integrals in (3) depends on SCSI in the t-th
frame ISCSI

t which can be predicted from ISCSI
1 and {ωk},

the precoders and combiners for all the frames within one

scheduling period can be pre-designed in the beginning of 1-

st frame. Note that different from the statistical beamforming

proposed in [18], we consider non-stationary AoA/AoD cluster

means and limited FoVs of ULA. Therefore, beam may switch

towards another cluster in advance when previously steered

cluster becomes out of FoV due to UE rotation. Moreover,

given Scheme 1, the cumulative distribution function (CDF)

of the baseband channel power gain can be derived as follows.

Lemma 1 (CDF of Yt,k). With Scheme 1, when NR and NT

are sufficiently large, the CDF of Yt,k is given by (4), where
Φt,k,i follows the binomial distribution given by (5), and

PR;q =
{
φ
∣∣∣∣ sin(φ)− 2(q−1)−NR

NR

∣∣ ≤ 1
NR

}
, (6)

PT;p =
{
θ
∣∣∣∣ sin(θ)− 2(p−1)−NT

NT

∣∣ ≤ 1
NT

}
. (7)

Proof. Please refer to Appendix A.

D. System Queue Dynamics

There are K queues for downlink transmission at the BS,

each for one UE. The arrival data of each queue is organized

by packets, each with B information bits. It is assumed that

the number of arrival packets at the k-th UE in the t-th frame,

denoted as At,k, follows independent Poisson distribution with

expectation λk across UEs as in [19], i.e., Pr[At,k = n] =
(λn

k/n!)e
−λk . Let At�{At,k|∀k∈K} represent the aggregated

packet arrivals in the t-th frame. Without loss of generality, it

is assumed that all packets arrive at the end of each frame.

Suppose the dt-th UE is selected in the t-th frame, the

number of departure packets from the dt-th queue in the t-
th frame is given by Dt,dt

=�WRt,dt
TF/B�. Denote Qt,k as

the queue length of the k-th queue at the beginning of t-th
frame and Qmax as the buffer size for each queue both in

terms of packets. The queue dynamics can be expressed as

Qt+1,k = min{QD
t,k+At,k, Qmax}, where the arrival packets

will be discarded if the buffer is full. The post-decision queue

length QD
t,k is defined as

QD
t,k =

{
(Qt,k −Dt,k)

+ k = dt,

Qt,k k �= dt,
(8)

where (·)+�max(0, ·).

III. PROBLEM FORMULATION

Given the precoder and combiner design in Scheme 1, we

shall formulate the UE selection and power allocation for all

the frames in one scheduling period as a finite-horizon MDP.

Note that this is because the system adopts the same prediction

for UE rotations in all the frames of one scheduling period.

In order to facilitate the MDP formulation, the system state,

scheduling action and policy, and post-decision scheduling

policy are first elaborated as follows.

Definition 2 (System State). At the beginning of the t-th
frame, the system state is represented by St � (Qt,Yt),
consisting of queuing state information (QSI) of all the UEs
Qt � {Qt,1, Qt,2, . . . , Qt,K}, and baseband channel power
gains to all the UEs Yt�{Yt,1, Yt,2, . . . , Yt,K}.
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(q†t , p
†
t) = argmaxq,p EHt,k

[∣∣aHR (φq)Ht,kaT (θp)
∣∣2]

= argmaxq,p
∑Ncl

k
i=1 N

ray
k,i σ

2
α;k,i

{ ∫ φmax

φmin

∣∣aHR (φq)aR(φt,k,i,1)
∣∣2 fφ;k,i(φt,k,i,1)dφt,k,i,1

}
×{ ∫ θmax

θmin

∣∣aHT(θt,k,i,1)aT (θp)
∣∣2 fθ;k,i(θt,k,i,1)dθt,k,i,1}. (3)

FYt,k
(x) � Pr[Yt,k ≤ x] = E{Φt,k,i|∀i}

{
1− exp(−x/

∑Ncl
k

i=1Φt,k,iσ
2
α;k,i)

}
, x > 0, (4)

Φt,k,i∼Binomial
(
N ray

k,i ,Pr
[
φt,k,i,�∈PR;q†t

∩[φmin, φmax]
]
Pr

[
θt,k,i,�∈PT;p†

t
∩[θmin, θmax]

])
(5)

Definition 3 (Scheduling Action and Policy). At the beginning
of the t-th frame, the scheduling actions include the UE
selection for downlink transmission dt ∈K and the downlink
transmission power Pt �Pt,dt , where the following instanta-
neous power constraint at the BS should be satisfied,

Pt ≤ Pmax, ∀t. (9)

Hence, the scheduling policy of the BS, denoted as Ωt, is a
mapping from the system state St to the scheduling actions.
Thus, Ωt(St)�(dt, Pt).

Definition 4 (Post-Decision State). At the beginning of the
t-th frame, the post-decision system state is defined by SD

t �
(QD

t ,Yt), where QD
t � {QD

t,1, Q
D
t,2, . . . , Q

D
t,K} denotes post-

decision QSI of all the UEs.

The post-decision system state is the system state af-

ter packet transmission but before packet arrivals. Given

the above definition of post-decision system state and

scheduling policy, the transition probability is given

by Pr(SD
t+1|SD

t ,Ωt+1) = Pr(QD
t+1|QD

t ,Ωt+1) Pr(Yt+1) =∏K
k=1 Pr(Q

D
t+1,k|QD

t,k,Ωt+1,k)
∏K

k=1 Pr(Yt+1,k).

In this paper, the scheduling policies are designed to op-

timize the system queuing performance, while saving the

average total energy consumption. Specifically, the transmis-

sion energy, average packet transmission delay and penalty

of packet drop are considered as the costs of scheduling.

According to Little’s law, the sum of queuing packet numbers

of all the frames in the scheduling period can be used as an

equivalent measurement of average transmission delay. Hence,

we define the following weighted sum of the transmission

power consumption, the number of queuing packets for all UE

and full buffer penalty as the system cost in the t-th frame,

gt
(St,Ωt(St)

)
�wPPt+

∑
k∈K

(
Qt,k+wQI[Qt,k=Qmax]

)
,

where wP and wQ are the weights of power consumption and

full buffer penalty respectively, and I[·] denotes an indicator

function, which is 1 when the event is true and 0 otherwise.

The overall minimization objective of one scheduling period

with the initial system state S1 is then given by

G(S1,Ω)�E
Ω
A,Y

[∑T
t=1 gt

(St,Ωt(St)
)
+	

(QT+1

)∣∣S1

]
,

where A � {At|∀t}, Y � {Yt|∀t}, Ω � {Ωt|∀t}, and

	(QT+1) �
∑

k∈K QT+1,k counts for the remaining packet

number at the end of one scheduling period. The expectation

is taken with respect to the randomness of packet arrivals

A and baseband channel power gains Y . As a result, the

transmission design in this paper can be formulated as the

following dynamic programming problem.

P1 : Ω� � {Ω�
t |∀t} =argminΩ G(S1,Ω)

s.t. 0 ≤ Pt ≤ Pmax, ∀t.
We shall adopt the Bellman’s equations with post-decision

value functions to solve P1. Note that the baseband channel

power gains are independently distributed in different frames,

it can be averaged as in [19], and the Bellman’s equation based

on the post-decision QSI only can be written as

Wt(QD
t ) =minΩt+1(St+1) EAt,Yt+1

[
gt+1

(St+1,Ωt+1(St+1)
)

+Wt+1

(QD
t+1

)∣∣QD
t

]
(10)

where Wt(QD
t ) is the post-decision value function of the

optimal policy (referred to as optimal value function for short),

and WT (QD
T ) � EAT

	(QT+1|QD
T ) for the notation conve-

nience. The Bellman’s equations with post-decision system

state can avoid complicated calculation of transition matrix

and expectation of value functions [20]. Moreover, the optimal

scheduling policy in the t-th frame (∀t=1, 2, . . . , T ) for P1
can be obtained by

Ω�
t (St) =argminΩt(St)

{
gt
(St,Ωt(St)

)
+Wt

(QD
t

)}
(11)

s.t. 0 ≤ Pt ≤ Pmax, ∀t.
IV. LOW-COMPLEXITY SCHEDULING

It can be observed from (11) that the optimal value function

for the t-th frame Wt(QD
t ) should be calculated before the

derivation of the optimal scheduling policy for the t-th frame

Ωt(St). However, because of the minimization in (11), it is

difficult to derive the closed-form expression for the optimal

value function in each frame {Wt(QD
t )|∀t}. It is also difficult

to calculate the value functions for all possible system states

numerically due to the huge system state space. In this section,

a low-complexity solution framework is proposed. Specifically,

we first adopt the backpressure algorithm [21] as the base

policy and derive the closed-form expressions of its value

functions (referred to as approximate value function for short).

Then the approximate value functions are used to approximate

the optimal value functions to obtain the improved scheduling

policy by one-step policy improvement.

A. Base Policy

As in (10), the base policy provides an approximation of

average future cost to improve current scheduling actions.

It should have a good scheduling performance and a simple

structure for analysis. Hence, as the base policy, we predeter-

mine the transmission powers and UE selection for all frames

at the very beginning of one scheduling period. Particularly,

given the system QSI in the 1-st frame, we use the average
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downlink throughput and packet arrival rate to approximate the

queue dynamics, and adopt the backpressure algorithm [21]

to select the downlink UE. Let PBSL be the predetermined

transmission power and Q†
t,k be the approximate queue length

of the k-th queue at the beginning of the t-th frame, then the

index of the selected UE is given by

dΠt =argmaxk∈K
[
R†

t,k(PBSL)Q
†
t,k

]
, ∀t, (12)

where R†
t,k is the predicted average spectral

efficiency of the k-th UE in the t-th frame, i.e.,

R†
t,k(PBSL)�

∫
log2

(
1+ PBSLx

N0W

)dFYt,k
(x)

dx dx, ∀t, k∈K.

Moreover, given UE selection in the t-th frame, the QSI in

the (t+1)-th frame can be approximated by

Q†
t+1,k=

{
min{(Q†

t,k−D†
t,k)

++λk, Qmax} k=dΠt ,

min{Q†
t,k+λk, Qmax} k �=dΠt ,

(13)

where Q†
1,k=Q1,k and D†

t,k�
⌊
WR†

t,k(PBSL)NF/B
⌋
, ∀t, k∈

K. By applying (12) and (13) iteratively, the UE selection of

the base policy can be determined. Hence, the base policy can

be summarized as following.

Policy 1 (Base Policy Π). The transmission power to each
selected UE for base policy is fixed, i.e., Pt = PBSL, ∀t.
Moreover, the UE selection is determined by applying (12)

and (13) iteratively, which is denoted as {dΠ1 , dΠ2 , . . . , dΠT }.

Although the base policy is obtained by approximating

queue dynamics with averaging, the approximate value func-

tion should be evaluated with actual distribution of packet

arrivals and departures. Hence, the approximate value function,

which approximately measures the average system cost for all

the UEs from the (t+1)-th frame, can be written as

WΠ
t (QD

t ) = (T − t)wPPBSL +
∑

k∈K WΠ
t,k(Q

D
t,k), (14)

where the local value function WΠ
t,k(Q

D
t,k) is defined as the

average queuing cost raised by the k-th UE from the (t+1)-th
frame to the end of the current scheduling period given the

base policy Π and its local post-decision QSI QD
t,k. Thus,

WΠ
t,k(Q

D
t,k) �E

Π
A,Y

[∑T
τ=t+1

(
Qτ,k+wQI[Qτ,k=Qmax]

)
+QT+1,k

∣∣QD
t,k

]
, ∀k ∈ K. (15)

In order to derive the analytical expression of WΠ
t,k(Q

D
t,k),

denote the number of departure packets from the k-th queue

in the t-th frame under the base policy as DΠ
t,k if the k-th UE

is selected, then we have the following lemma.

Lemma 2. With Scheme 1, the probability mass func-
tion (PMF) of DΠ

t,k is given by Pr[DΠ
t,k = n] =

FYt,k

[(
2

(n+1)B
WTF −1

)
N0W
PBSL

]−FYt,k

[(
2

nB
WTF −1

)
N0W
PBSL

]
.

Proof. The proof is straightforward based on the definition of

Dt,k and Rt,k.

Hence, the local approximate value function WΠ
t,k(Q

D
t,k)

(∀t, k) is derived in the following lemma.

Lemma 3 (Analytical Expression of WΠ
t,k(Q

D
t,k)). Let

ut,k, st,τ,k, c
(1), c(2)∈R

(Qmax+1)×1, which are defined by ut,k�
1QD

t,k+1
, st,τ,k�1Qτ,k+1, [c(1)]i� i−1+wQI[i=Qmax+1], and

[c(2)]i� i−1, respectively. 1i denotes the column vector whose

i-th element is 1 and other elements are 0. Let Pk,Mt,k ∈
R

(Qmax+1)×(Qmax+1), whose entries are given by (17) and (18),
respectively. Then WΠ

t,k(Q
D
t,k) can be represented by

WΠ
t,k(Q

D
t,k) =

∑T
τ=t+1 s

T
t,τ,kc

(1) + sTt,T+1,kc
(2), (16)

where st,τ,k = XT
k (t, τ)P

T
kut,k, and Xk(t, τ) =∏τ−1

n=t+1 M
I(dΠ

n=k)
n,k P

I(dΠ
n �=k)

k , τ = t+ 1, . . . , T .

Proof. Please refer to Appendix B.

B. Scheduling with Approximate Value Function

In this part, we use approximate value functions

{WΠ
t (QD

t )|∀t,QD
t } to approximate optimal value functions

{Wt(QD
t )|∀t,QD

t }. Because the approximate value function is

analytically expressed, conventional value iteration to evaluate

the value function can be avoided, which can significantly

reduce the computational complexity. With the approximate

value function, the scheduling actions in the t-th (∀t) frame

could be obtained by solving the following problem.

P2 (One-Step Policy Iteration):

Ψt(St) � (dΨt , P
Ψ
t )

=argminΩt(St)

{
gt
(St,Ωt(St)

)
+WΠ

t

(QD
t (St,Ωt)

)}
,

s.t. 0 ≤ Pt ≤ Pmax.

Since both the current system cost and approximate value

function in the t-th frame can be decomposed by each UE,

P2 can be decomposed into K sub-problems. The k-th sub-

problem is given by

P2(k) : Pψ
t,k =argminPt,k

{
wpPt,k +WΠ

t

(QD
t (St, πt,k)

)}
,

s.t. 0 ≤ Pt,k ≤ Pmax,

where πt,k � (k, Pt,k) denotes the policy that the k-th UE is

selected. Moreover, denote the minimized objective of P2(k)
as Gψ

t,k, then the optimal solution of P2 can be derived by

dΨt =argmink∈K Gψ
t,k and PΨ

t =Pψ

t,dΨ
t

.

The transmission power allocation for P2(k), which is

a discrete optimization problem, can be achieved via the

following one-dimensional search.

Lemma 4 (Local Power Optimization). The optimized trans-
mission power for the k-th UE (solution of P2(k)) is

Pψ
t,k = argminPt,k∈Pt,k

{
wPPt,k +ΔzTt,k(Pt,k)Vt,k

}
,

(19)

where Pt,k�
{
0, 2

B
WNF−1
Yt,k

, 2
2B

WNF−1
Yt,k

,. . .,min
(
2

QmaxB
WNF −1
Yt,k

,Pmax

)}
is the feasible power set, Δzt,k(Pt,k) = 1QD

t,k(Pt,k)+1 −
1Qt,k+1, QD

t,k(Pt,k)=
(
Qt,k−

⌊WRt,k(Pt,k)TF

B

⌋)+
, Vt,k =∑T

τ=t+1 Y
T
τ,kc

(1)+
∑T+1

τ=t+2 Y
T
τ,kc

(2), and

Yτ,k =

{
PT

k τ = t+ 1,

XT
k (t+ 1, τ)Yt+1,k τ = t+ 2, . . . , T.

(20)

Proof. The feasible power set Pt,k is the minimum required

transmission power to transmit an integer number of packets,

thus it will not affect the optimality. Then P2(k) can be

solved by one-dimensional search in Pt,k. ΔzTt,k(Pt,k)Vt,k=

WΠ
t,k

(
QD

t,k(Pt,k)
)−WΠ

t,k(Qt,k), where WΠ
t,k(Qt,k) is a constant

in P2(k). Thus, the proof is straightforward.
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[Pk]i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pr[At,k = j − i] 1 ≤ i ≤ Qmax and i ≤ j ≤ Qmax,

Pr[At,k ≥ Qmax + 1− i] 1 ≤ i ≤ Qmax and j = Qmax + 1,

1 i = Qmax + 1 and j = Qmax + 1,

0 otherwise

(17)

[Mt,k]i,j =

⎧⎪⎨
⎪⎩
Pr[DΠ

t,k ≥ i− 1] Pr[At,k = 0] 1 ≤ i ≤ Qmax + 1 and j = 1,

Pr[At,k −min(DΠ
t,k, i− 1) = j − i] 1 ≤ i ≤ Qmax + 1 and 2 ≤ j ≤ Qmax,

Pr[At,k −min(DΠ
t,k, i− 1) ≥ Qmax + 1− i] 1 ≤ i ≤ Qmax + 1 and j = Qmax + 1

(18)

As a summary, the system can be scheduled in a semi-

distributed manner as elaborated below.

• Step 1: At the beginning of one scheduling period, each

UE (say the k-th UE) calculates {Vt,k|∀t} locally based

on SCSI ISCSI
t and the angular velocity ωk.

• Step 2: At the beginning of the t-th frame (∀t), each UE

(say the k-th UE) calculates the optimal power Pψ
t,k by

assuming it is selected, and reports Gψ
t,k and Pψ

t,k to the

BS via uplink signaling channel.

• Step 3: After receiving the reports from all UEs, the BS

determines the improved scheduling policy Ψt.

V. SIMULATIONS AND DISCUSSION

In this part, the performance of the proposed algorithm is

demonstrated via numerical simulations with existing bench-

mark algorithms for comparison. There are eight UEs in the

system where four UEs are static with zero angular velocities

(indexed with 1 ∼ 4) while the other four UEs are rotating

with angular velocity 2 rad/s (indexed with 5 ∼ 8). We

compare the proposed algorithms with the following three

benchmarks, which are referred to BM1, BM2 and BM3.

For fair comparison, the fixed transmission power of the base

policy and benchmarks are the same, i.e., PBSL=PBM.

BM 1 (Dynamic Backpressure). The transmission power
to each selected UE is fixed to PBM. The UE selection
is based on the backpressure algorithm [21] according
to the real-time data rate and queue length, i.e., dt =
argmaxk∈K Rt,k(PBM)Qt,k.

BM 2 (Largest-Rate First). The transmission power to each
selected UE is fixed to PBM. In each frame, the UE with the
largest data rate is selected, i.e., dt=argmaxk∈K Rt,k(PBM).

BM 3 (Longest-Queue First). The transmission power to each
selected UE is fixed to PBM. In each frame, the UE with the
longest queue is selected, i.e., dt=argmaxk∈K Qt,k.

The instantaneous SNR and queue length of a static UE

(indexed by k=1) and a rotating UE (indexed by k=5) in one

realization of scheduling period are illustrated in Fig. 2. The 5-

th UE cannot find appropriate combiner due to UE rotation and

limited FoV in the middle of the scheduling period, leading to

weak SNRs. It can be observed that the proposed scheme can

predict the low SNR period of rotating UEs and schedule more

transmission opportunities to them before the low SNR period,

so that the packet drop rate can be significantly reduced.

As a comparison, the benchmarks suffer from high packet
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Fig. 2. The dynamics of SNR and queue length. T =100, Qmax =
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Fig. 3. (a) CDF of the per-frame cost. (b) Average transmission power,
queuing delay and the number of packet-drop UEs.

drop rate during the low SNR period. This demonstrates the

performance gain of the sensing-based channel prediction and

the proposed predictive scheduling framework.

While Fig. 2 shows the system performance in a snapshot,

Fig. 3(a) shows CDFs of per-frame cost of the proposed

scheme as well as the benchmarks. It can be observed that

the proposed algorithm has significantly better CDF curves

than the benchmarks. More insights can be obtained from Fig.

3(b), where average transmission power, queuing delay, and

the number of packet drop UEs are illustrated. BM1 has the

medium cost of delay and packet drop penalty. This is because

it makes UE selection according to both the queue length and
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data rate. BM2 has the least cost of delay because it attempts to

decrease the queue length as much as possible in every single

frame. BM3 takes only the QSI into account but neglects the

channel state information (CSI), which results in the worst

performance. The proposed scheme manages to achieve the

minimum packet drop rate, while keeping the average queuing

delay in a low level. This demonstrates the benefits of channel

prediction of the proposed scheme in suppressing the packet

drop rate with non-stationary mmWave channel statistics.

VI. CONCLUSION

In this paper, we consider the downlink transmission

scheduling in an mmWave cell. Each UE is rotating with a

predictable angular velocity for a number of frames, where

the angular velocity of rotation can be measured by embedded

motion sensors and reported to the BS. We first propose an

SCSI-based beam alignment scheme. Then, we formulate the

joint optimization of the downlink UE selection and power

allocation as a finite-horizon MDP. To address the curse of
dimensionality, we finally propose a novel approximate MDP

approach via one-step policy improvement over a base policy.

Simulations show that the proposed MDP solution framework

can effectively exploit the motion sensors to predict the future

performance, resulting in an efficient scheduling algorithm.

APPENDIX A

PROOF OF LEMMA 1

Note that Yt,k = |wH
t,kHt,kft,k|2 = �2(wH

t,kHt,kft,k) +

�2(wH
t,kHt,kft,k). According to [22], when NR and NT are

both sufficiently large, we have
∣∣aHR(φq†t

)aR(φt,k,i,�)
∣∣2 →

{0, 1},
∣∣aHT(θp†

t
)aT(θt,k,i,�)

∣∣2→{0, 1}. Denote the set It,k,i�{
�
∣∣|aHR(φq†t

)aR(φt,k,i,�)|2 → 1, |aHT(θp†
t
)aT(θt,k,i,�)|2 → 1,

ΛR(φt,k,i,�)ΛT(θt,k,i,�) = 1
}

, then Φt,k,i � |It,k,i| will

follow the binomial distribution. Conditioned on {Φt,k,i|∀i},

the real and imaginary parts of wH
t,kHt,kft,k will fol-

low normal distributions, e.g., �(wH
t,kHt,kft,k

)∣∣
{Φt,k,i|∀i} ∼

N (
0, 1

2

∑Ncl
k

i=1 Φt,k,iσ
2
α;k,i

)
. Remind that if χ2

2 is a random

variable following chi-squared distribution with degrees of

freedom 2, then the CDF of χ2
2 is Fχ2

2
(x)=1−exp(−x/2), x>

0. Hence, Lemma 1 is straightforward.

APPENDIX B

PROOF OF LEMMA 3

ut,k and st,τ,k represent the post-decision and pre-decision

probability vector for the k-th queue respectively. [c(1)]i and

[c(2)]i represent the per-frame queuing and packet-drop cost

for the k-th UE in the τ -th frame for cases t+1≤ τ ≤T and

τ=T+1, respectively. Mt,k and Pk are transition probability

matrices for the k-th queue considering both packet departure

and arrival and only the packet arrivals, respectively. In (16),

sTt,τ,kc
(1) and sTt,T+1,kc

(2) counts for the average queuing and

packet-drop cost in the τ -th frame for cases t+1≤τ≤T and

τ=T+1, respectively. Hence, Lemma 3 is straightforward.
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