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Wireless sensor networks (WSNs) leveraging millimeter wave (mmWave) communication for bandwidth- 

demanding applications is considered in this article. Despite the large bandwidth, the delivery of delay- 

sensitive information collected by sensors may still face significant latency due to the vulnerability to 

intermittent link blockage. Hence, the guarantee of low age of information (AoI) in mmWave WSNs is 

not straightforward. In this article, the wireless sensing and dynamic programming techniques are jointly 

exploited to relieve the above issue. The former tracks the human blockers and predicts the chance of link 

blockage; the latter optimizes the transmission of multiple sensors based on the prediction. Particularly, 

the long-term optimization of sampling, uplink time and power allocation policies in a sensor network can 

be formulated as an infinite-horizon Markov decision process (MDP) with discounted cost, where the state 

transition probabilities can be predicted via wireless sensing. A novel low-complexity solution framework, 

namely COSMO, with a guaranteed performance in the worst case, is proposed. Simulations show that 

compared with heuristic benchmarks, benefiting from the prediction of the link blockage, COSMO can 

significantly suppress the average system cost, which consists of both AoI and energy consumption. 
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 Introduction 

n wireless sensor networks (WSNs) , collecting sensing samples from the sensors (e.g., camera

napshots or broadband radar echos) and maintaining its timeliness at the server are considered

s a challenge in many real-time and data-intensive applications. With the ever-increasing dense

ensor deployment and throughput demand, communication in the millimeter wave (mmWave)

and is expected in WSNs due to its wide bandwidth. However, because of the sparse propagation

aths, the pencil-shaped beams for overcoming the extremely high path loss, and the weak capabil-

ty of diffraction, mmWave communications may suffer from the link blockage issue in dynamic

nvironments, which might not be severe in the traditional sub-6GHz communication systems.

his will cause severe channel fluctuation, making the delivery of sensing samples outdated [ 23 ].

To quantify the freshness of the sensing samples, the concept of age of information (AoI) has

een adopted as a metric [ 13 ], which is defined as the time elapsed since the status of the sensing

arget is sampled at the sensor. In the data-intensive applications of WSNs, mmWave communi-

ation could be adopted for sensing samples’ uploading from sensors to the server [ 25 , 36 ], such

hat the uploading latency and AoI at the server could be suppressed. However, the link block-

ge due to mobile blockers in the environment (e.g., human bodies) has become one of the open

ssues in mmWave communications [ 6 ]. Particularly, the blockage of line-of-sight ( LoS ) path in

mWave communications would result in significant signal-to-noise ratio ( SNR ) degradation,

nd hence large AoI or even outdated sensing samples at the server. For example, when a worker

s patrolling an automatic assembly workshop, where most assembly tasks can be monitored by

ameras, he may intermittently block the uplink mmWave transmission of photos or videos from

he cameras to the monitoring server, leading to packet loss and retransmission. In fact, with the

echnique of wireless sensing, the layout of the communication environment can be reconstructed

n advance [ 22 , 34 ], and the locations of the mobile blockers can be tracked in real-time [ 28 ], such

hat potential link degradation due to blockage can be predicted. Intuitively, it would be helpful to

uppress the AoI degradation if the scheduler could predict a link blockage of one sensor and raise

ts priority on sensing sample uploading in advance. To date, however, it is still unknown how to

ncorporate the above insight into a resource optimization framework, or how to design a joint

ampling and uploading policy for mmWave WSNs benefiting from wireless sensing technique. 

In this article, we would like to shed some light on the above open problems and propose

OSMO , a dynamiC uplOading Scheduling scheme with Mobile blOckers , to tackle the joint

ampling and uploading policy optimization in a mmWave-based sensor network with the aware-

ess of the communication environment. Specifically, the sensors obtain the sensing samples, and

eliver them to a server connected to a base station (BS) via uplink. There are some walking

ersons in the communication environment. They are moving randomly and might block some

ignal paths and degrade the uplink channel. The wireless sensing technique is adopted, such that

he static locations of sensors, signal scattering clusters and BS, the real-time positions and ran-

om mobility patterns of walking persons are known to the scheduler. Hence, the joint scheduling
CM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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f sensors’ sampling and uplink transmission in a sequence of frames can be formulated as an

nfinite-horizon Markov decision process (MDP) . The discounted summation of average AoI at

he server and average energy consumption in sampling and uplink transmission is considered as

he minimization objective. Then, a low-complexity solution framework, namely COSMO, is pro-

osed to address the above MDP. The main contributions of this work are summarized as follows:

—To the best of our knowledge, it is the first work systemically investigating the AoI-oriented

scheduling design with the assistance of mmWave link blockage prediction. 

—In the proposed solution framework, the value function is approximated via analytical ex-

pressions. Thus, the computation-intensive value iteration can be eliminated, and the over-

all computation complexity can be significantly suppressed. 

—A non-trivial analytical lower bound on the performance is derived for COSMO. Notice

that it is usually difficult to analyze the performance of AMDP algorithms. 

It is shown by numerical simulations that compared with benchmarks without link blockage

rediction, COSMO can reduce the average cost up to 52.7%, which demonstrates the necessity of

ireless sensing in AoI-oriented mmWave sensor networks. 

The remainder of this article is organized as follows: The related works are discussed in

ection 2 . The system model is introduced in Section 3 . In Section 4 , the problem of dynamic

ampling and uploading scheduling is formulated as an infinite-horizon MDP. In Section 5 , a low-

omplexity suboptimal scheduling framework, namely COSMO, is proposed with a guarantee on

he worst-case performance. Finally, the performance of the proposed COSMO scheme is verified

y comparing it with the benchmarks in Section 6 , and the conclusion is drawn in Section 8 . 

We use the following notations throughout this article. Bold lowercase a denotes a column vec-

or, bold uppercase A denotes a matrix, non-bold letters a and A denote scalar values, and letters A
nd A denote sets. (a )+ denotes max (0 , a ). The operator ⊗ denotes a Kronecker product. [A ]i, j , A 

T ,

nd A 

H denote the (i, j)-th element, transpose, and conjugate transpose, respectively. C N (m, R)
enotes complex Gaussian distribution with mean m and variance R. U[a, b] denotes a uniform

istribution over the interval [a, b]. E [·] denotes an expectation operator. I[·] denotes an indicator

unction. Moreover, the main notations used in this article are listed in Table 1 

 Related Works 

.1 AoI-Oriented Dynamic Programming 

here have been a number of research works on AoI-oriented scheduling design in a variety of

ireless networks with dynamic programming [ 9 , 16 , 26 , 35 , 39 –42 ]. For example in [ 35 ], the min-

mization of the long-term average AoI for a single sensor with an energy harvesting ( EH ) bat-

ery was considered, where the scheduling design was formulated as a continuous-time stochastic

ontrol problem. In [ 26 ], the problem of status update control in an energy-harvesting-enabled

ource via an mmWave link was formulated as an MDP. In addition to the single-sensor scenario,

he works in [ 41 , 42 ] extended the joint sampling and transmission design to the multi-sensor

cenarios. The work in [ 41 ] minimized the summation of average AoIs of multiple sensors under

he sampling and transmission energy constraints via an MDP formulation. This work was further

xtended in [ 42 ] by considering transmission failures and non-uniform sample size. In [ 9 ], the age-

ware computation offloading problem in mobile edge computing ( MEC ) systems was formu-

ated as a constrained MDP ( CMDP ), such that long-term AoI could be minimized with limited

nergy consumption and wireless bandwidth. In [ 16 ], a learning-augmented online algorithm was

roposed to minimize AoI and transmission costs for the design of transmission control pro-

ocol ( TCP ) acknowledgment. However, the algorithms proposed in many of the existing works,
ACM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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Table 1. Main Notations 

Symbol Description 

Network 

K/ K Number/Set of sensors 

B/ B Number/Set of mobile blockers 

N R / N T Number of receive/transmit antenna elements 

L/L Number/Set of possible locations for mobile blockers 

Channel 

H t,k Channel matrix of kth sensor in t th frame 

I o 
t, k, i 

Blockage indicator of (k, i)-th path in t th frame 

αt, k, i Complex gain of (k, i)-th path in t th frame 

a R / a T Array response vector of the ULAs at the sensors/the BS 

Φk,i / Θk,i Sine of AoA/AoD of (k, i)-th path 

w t,k / f t,k Analog combiner/precoder of the BS/ kth sensor 

State 

l o 
t,b 

Location index of the bth mobile blocker in t th frame 

Y t,k Baseband channel power gain of kth sensor in t th frame

Q t,k Queue length of kth sensor in t th frame 

A 

s 
t,k 

AoI at kth sensor in t th frame 

A 

d 
t,k 

AoI for kth sensor at the server in t th frame 

Action 

s t,k Sampling action for kth sensor in t th frame 

τt,k Transmission time allocated to kth sensor in t th frame 

p t,k Transmission power of kth sensor in t th frame 
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uch as the Q-learning algorithm used in [ 9 , 26 ] and the policy iteration algorithm used in [ 40 ], are

rohibitive in computation complexity for multi-sensor scenarios, as it grows exponentially with

espect to the number of sensors. Although the linear approximation of value functions adopted

n [ 41 , 42 ] can reduce the computation complexity, it is difficult to evaluate their performance

nalytically. As a result, how to design an approximate MDP (AMDP) for AoI-oriented schedul-

ng design with a non-trivial performance lower bound and low computational complexity is still

nanswered. 

.2 Blockage-Aware mmWave Scheduling 

here have been a number of works on the transmission scheduling with link blockage aware-

ess in mmWave communication networks [ 5 , 21 , 31 , 33 ]. For example, relay-assisted scheduling

as proposed in mmWave small cells [ 33 ] and mmWave backhaul networks [ 21 ] to overcome link

lockage. In [ 5 ], a blockage-aware proportional fair scheduling was proposed for mmWave com-

unication systems with a four-state blockage model. In these works, the scheduling algorithms

re triggered either after blockage happens [ 21 , 33 ] or significant SNR degradation has been ob-

erved [ 5 ]. In fact, it is possible to predict the mmWave link degradation via in-band or out-of-

and sensing, so that its impacts can be mitigated in advance. For example in [ 31 ], the impact of

mWave link degradation due to device rotation and limited field-of-view ( FoV ) was mitigated

y channel prediction in an AMDP framework, where the average queuing delay was the mini-

ization objective. However, to our best knowledge, there is no existing work on the AoI-oriented

cheduling design exploiting sensing and channel prediction. 
CM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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Fig. 1. Network model of the considered mmWave-based WSN. 
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 System Model 

s illustrated in Figure 1 , we consider the scheduling of a monitoring system, which delivers the

elay-sensitive sensing samples from distributive sensors to a server via high-speed mmWave

plink communications. The system consists of one server connected with the BS and K sen-

ors. Both the BS and sensors are randomly deployed and static. The set of sensors is denoted

s K � {1 , 2 , . . . , K}. The sensors detect their targets (e.g., taking photos or detecting motions

ia radar waves), collect sensing samples, and deliver the sensing samples to the server via BS.

e shall refer to the action of collecting sensing samples as sampling. The timeliness of sens-

ng samples at the server depends on both policies of sampling and the uplink transmission of

amples. 

When a sampling action is made at a sensor, the delay in collecting sensing samples at the

erver comes from the uplink transmission. As shown in Figure 1 , both LoS and non-line-of-

ight (NLoS) signal propagation paths (e.g., scattering paths off the walls) may exist between

ach sensor and the BS. The locations of sensors, BS and scattering clusters are fixed, such that the

ngle-of-arrival (AoA) and angle-of-departure (AoD) of these paths are deterministic, which

an be sensed in advance via communication signals as in [ 28 ]. The analog MIMO architecture

ith single radio frequency (RF) chain and a half-wavelength uniform linear phased array

ULA) is adopted at both the BS and the sensors, so that both transmit and receive beams can be

ligned to the available paths. It is assumed that the linear phased arrays at the BS and sensors are

ith N R and N T antenna elements, respectively. 

Due to the short carrier wavelength, the diffraction of mmWave communication signals across

uman bodies is usually negligible. Hence, walking persons in the network may block the propa-

ation paths randomly as illustrated by the red path in Figure 1 , which may fail the transmission

nd cause a large delay to the uploading of sensing samples. Note that the issue of link blockage is

uch more significant in the mmWave band than that in the sub-6GHz band, and the link quality

uctuation would degrade the delay-sensitive communication dramatically. In order to mitigate

ts impact, a sensing-based predictive scheduling framework is proposed for AoI optimization in

mWave communication systems. 
ACM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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Particularly, it is assumed that there are B walking persons (blockers), denoted by the set B �
1 , 2 , . . . , B}. The locations of walking persons can be tracked as in [ 15 , 38 ]. Therefore, the potential

ath blockage can be predicted, such that the uplink channel quality of the coming future can be

oreseen. As a result, the sampling and uplink transmission can be adjusted to relieve the impact of

ath blockage. For example, if a LoS path blockage may happen soon, all the uplink transmission

esources may be scheduled to the suffering sensor to speed up the sample uploading. In order to

acilitate the prediction, the mobility of the B human blockers is modeled as follows: The uplink

ransmission time is organized by physical-layer frames with a duration T F , where the channel

tate information (CSI) is assumed to be quasi-static in one frame. The two-dimensional space of

he network coverage is quantized into a number of indexed grids. Let L � {1 , 2 , . . . , L} be the set

f location indexes. The location indexes of the BS and the kth sensors ( ∀ k) are denoted as l BS and

 

s 
k 

, respectively. The location index of the bth mobile human blocker in the t th frame is denoted as

 

o 
t,b 

, ∀ t , b. It is assumed that the mobility of the bth mobile blocker follows a time-invariant Markov

hain with the following transition probabilities: 

Pr 
[ 
l o t+1 ,b = � 

′ 
���l o t,b = � 

] 
= 

[
P 

o 
b 

]
� , � ′ 
, ∀ b, ∀ t , ∀ � , � ′ ∈ L , (1)

here P 

o 
b 
∈ R 

L×L denotes the transition matrix of the bth blocker’s mobility. Given the random

otion of the human blockers, the channel model, uplink transmission model and the AoI model

re elaborated in the following. 

.1 Channel and Uplink Transmission Models 

n order to capture the impact of path blockage by human blockers, the geometric channel model

 1 , 3 , 10 ] is adopted in this article. Specifically, there are at most M NLoS paths and one LoS path

rom one sensor to the BS. Denote M = {0 , 1 , 2 , . . . , M} as the index set of propagation paths,

here the index of the LoS path is 0 for notation convenience. Moreover, the ith path of the kth

ensor is denoted as the (k, i)-th path. Hence, as in [ 1 , 10 ], the channel matrix H t,k ∈ C 

N R ×N T from

he kth sensor to the BS in the t th frame can be written as 1 

H t,k = 
∑
i ∈M 

I o t, k, i (L 

o 
t )αt, k, i a R 

(
Φk,i 

)
a H 

T 

(
Θk,i 

)
, (2)

here L 

o 
t � {l o 

t,b 
} b ∈B is the aggregation of locations of blockers, and I o 

t, k, i 
(L 

o 
t ) ∈ { 0 , 1 } is the

lockage indicator. Thus, I o 
t, k, i 
(L 

o 
t ) = 0 when (k, i)-th path is blocked, otherwise I o 

t, k, i 
(L 

o 
t ) = 1 .

oreover, Φk,i � sin ϕk,i , Θk,i � sin θk,i , ϕk,i and θk,i are the AoA and AoD of the (k, i)-th path,

espectively. αt, k, i denotes the complex gain of the (k, i)-th path in the t th frame obeying a complex

aussian distribution with zero mean and variance ρ−1 
k,i 

, i.e., αt, k, i ∼ C N (0 , ρ−1 
k,i 
). The path loss ρk,i 

epends on the path length and scattering loss. a R (Φk,i ) and a T (Θk,i ) represent the normalized

rray response vectors of the ULAs at the sensors and the BS, respectively, which are expressed as

n [ 1 , 10 ] by 

a R (Φk,i ) � 

1 
√ 

N R 

[
1 , e −jπ Φk,i , . . . , e −jπ (N R −1 )Φk,i 

]T 
, (3)

a T (Θk,i ) � 

1 
√ 

N T 

[
1 , e −jπ Θk,i , . . . , e −jπ (N T −1 )Θk,i 

]T 
. (4)
 We assume that the reflectors of mmWave signals in the environment (e.g., walls and big furniture) are of fixed quantity 

nd quasi-static. This is because the dynamics of the reflectors (e.g., change of furniture positions) happen in the timescale 

f days or months, which is much longer than the timescale of communication scheduling. 
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All the human blockers are modeled as a disk with radius r B in the two-dimensional network

overage. Hence, the indicator I o 
t, k, i 

in ( 2 ) can be determined by comparing the blocker radius with

he shortest distances between the blockers’ centroids and the ith path. Particularly, let P k,i be the

et of connected line segments in the (k, i)-th path, and D(�, P k,i ) be the minimum distance from

he location � to the line segments in P k,i , then 

I o t, k, i (L 

o 
t ) = 

∏
b ∈B 

I 
[
D(l o t,b , P k,i ) ≥ r B 

]
. (5)

ote that the path loss of the LoS path is usually much smaller than that of the NLoS paths, the

plink transmission suffers from significant degradation when the LoS path is blocked. 

Remark 1 (Non-Stationary Channel Model). Notice that the channel matrix H t,k is a superposi-

ion of all the propagation paths from the kth sensor to the BS. The random gain of each path,

t, k, i , is stationary versus time. However, the set of blocked paths depends on the mobility of the

lockers. Due to the random mobility of blockers, the blocked paths could be different in different

rames. Hence, the distributions of H t,k in different frames are different, leading to a non-stationary

hannel model. Moreover, the prediction of future channel distribution relies on the prediction of

lockers’ future locations. 

Let w t,k ∈ C 

N R ×1 and f t,k ∈ C 

N T ×1 be the analog combiner and precoder of the BS and the kth

ensor when the kth sensor is transmitting in the t th frame, respectively. The uplink capacity of

he kth sensor in the t th frame can be expressed as 

R t,k � W log 2 

( 
1 + p t,k 

���w 

H 

t,k 
H t,k f t,k 

���2 
‖ w t,k ‖ 2 N 0 W ︸� � � � � � � � � � � � � ︷︷� � � � � � � � � � � � � ︸ 

Baseband gain Y t,k 

) 
, (6)

here Y t,k (L 

o 
t ) � 

|w 

H 
t,k 

H t,k f t,k | 2 

‖ w t,k ‖ 2 N 0 W 

denotes the baseband channel power gain (baseband gain for

hort), p t,k denotes the transmission power of the kth sensor, N 0 is the noise power spectral

ensity, and W is the bandwidth. Due to the hardware constraint, the maximum transmission

ower satisfies 

p t,k ≤ P max , ∀ t , k ∈ K . (7)

The analog precoders and combiners are chosen from the following pre-defined codebook com-

osed of a finite number of beam directions: 

w t,k ∈ W � {a R (Φq )|q = 1 , 2 , . . . , N R }, (8)

f t,k ∈ F � {a T (Θp )|p = 1 , 2 , . . . , N T }, ∀ t , k, (9)

here Φq = 
2 (q−1 )

N R 
− 1 and Θp = 

2 (p−1 )
N T 
− 1 . They might be chosen to maximize the instantaneous

ignal-to-noise ratio (SNR) according to the channel matrix H t,k . However, the overhead of es-

imating channel matrix with analog MIMO architecture is significant. Instead of channel matrix

stimation, the time-varying blockers’ locations, constant AoAs, AoDs and path loss of propaga-

ion paths can be sensed in advance as in [ 22 , 34 ]. Hence, the analog precoder and combiner in

ach frame (say the t th frame) are designed to maximize the average SNR as follows: (
w t,k , f t,k 

)
= arg max 

a R (Φq )∈W 

a T (Θp )∈F 

E H t ,k 

[��a H 

R (Φq )H t,k a T (Θp )
��2 ����L 

o 
t , Φk,i , Θk,i , ρk,i , ∀ i 

]
, (10)
ACM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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here the expectation is taken with respect to the random path gains { αt, k, i |∀ i} . The two-

imensional search over the precoder and combiner codebooks and the method of sample average

pproximation can be used to find the optimal precoder and combiner pair. However, searching

ver all N R N T precoder and combiner pairs by Monte-Carlo channel simulation is computation-

ntensive. Therefore, we shall provide a low-complexity solution for precoder and combiner selec-

ion in Lemma 1 of Section 5.1 . 

Time-division multiple access (TDMA) is adopted in each frame for multiple access. Let τt,k 

e the transmission time allocated to the kth sensor in the t th frame, the throughput of the kth

ensor in the t th frame is τt,k R t,k , where the following constraints should be satisfied: ∑
k ∈K 

τt,k = T F , ∀ t , (11)

0 ≤ τt,k ≤ T F , ∀ t , k ∈ K . (12)

Remark 2 (Channel Capacity Prediction). Given the locations of human blockers in the current

rame (say the t th frame) L 

o 
t , the possible locations of these blockers in the future frames (say the

th frame, m > t ) L 

o 
m 

can be predicted according to the mobility transition matrices {P 

o 
b 
} b ∈B . For

ach possible value of L 

o 
m 

, the analog precoder and combiner for each sensor can be calculated

ccording to ( 10 ), and finally, the distributions of channel capacities {R m,k } k ∈K can be forecast

ccording to ( 6 ). Thus, wireless sensing could enable the capacity prediction of mmWave channel

ith mobile blockers. 

.2 Queuing and AoI Models for Sample Uploading 

he procedure of sensing sample collection is as follows: The server delivers a sensing decision

o one sensor at the beginning of one frame, a sensing sample representing the latest target sta-

us is generated by the sensor and available for uploading since the same frame. Similar to the

xisting literature, we ignore the downlink signaling delay of sensing decisions and the sampling

elay. 

The sampling action will induce a constant sampling energy cost denoted by C 

s . As in [ 42 ], it is

ssumed that the data volume of each sample generated by the kth sensor consists of Q 

max 
k 

packets,

ach with N b information bits. When a new data sample is generated at one sensor, the existing

ackets from the previous sampling in its uplink queue will be dropped, and new packets will be

dded. Let s t,k ∈ { 0 , 1 } be the sampling action for the kth sensor in the t th frame. s t,k = 0 indicates

o sampling and transmission of the existing sample in the t th frame, and s t,k = 1 indicates the

ransmission of the new sample in the t th frame. Let Q t,k be the length of the uplink transmis-

ion queue (number of uplink packets) of the kth sensor at the beginning of the t th frame, we

ave 

Q t+1 ,k = 

{ 

(Q t,k − D t,k )+, s t,k = 0 

Q 

max 
k 
− D t,k , s t,k = 1 , 

(13)

here D t,k = 
R t,k τt,k /N b � denotes the departure packet number of the kth sensor in the t th
rame. 

To characterize the freshness of samples, the AoI at the kth sensor in the t th frame, denoted

y A 

s 
t,k 

, is defined as the duration (in terms of frame number) from the generation time of the

atest sample to the t th frame. Moreover, we introduce an AoI threshold A max to characterize the
CM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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utdated samples. 2 Hence, the AoI dynamics at the kth sensor is given by 

A 

s 
t+1 ,k = 

{ 

min 

{
A 

s 
t,k 
+ 1 , A max 

}
, s t,k = 0 

1 , s t,k = 1 . 
(14)

oreover, the AoI for the kth sensor at the server in the t th frame, denoted as A 

d 
t,k 

, is defined as

he duration (in terms of frame number) from the generation time of the latest received sample

o the t th frame. Hence, A 

d 
t,k 

increases in each frame, unless a new sensing sample from the kth

ensor is completely received or the AoI threshold A max is reached. Thus, 

A 

d 
t+1 ,k = 

{ 

min 

{
A 

s 
t,k 
+ 1 , A max 

}
, D t,k ≥ Q t,k 

min 

{
A 

d 
t,k 
+ 1 , A max 

}
, otherwise . 

(15)

 Problem Formulation 

his article aims at achieving a good tradeoff performance between the average AoI at the server

nd the average energy consumption. The former depends on the sampling action, uplink time

nd power allocations of all the frames. Clearly, due to the random motion of the human blockers

 L 

o 
t |∀ t} and random path gains {αt, k, i | ∀ t , k , i}, it is impossible for the BS to determine the above

ctions of all the frames in a deterministic manner. Instead, we shall formulate their optimization

s an infinite-horizon MDP. Particularly, the system state, scheduling policy, and system cost are

rst defined below. 

Pr 
[
S t+1 

��S t , Ω(S t )]
= 

∏
b ∈B 

Pr 
[
l o t+1 ,b 

��l o t,b 

]
× Pr 

[
Y t+1 

��L 

o 
t+1 

]
×

∏
k ∈K 

{ 
(1 − s t,k )I 

[
A 

s 
t+1 ,k = min {A 

s 
t,k + 1 , A max } 

]
+ s t,k I 

[
A t+1 ,k = 1 

]} 
×

∏
k ∈K 

{ 
(1 − s t,k )I 

[
Q t+1 ,k = (Q t,k − D t,k )+

��Y t,k , τt,k , p t,k 
]

+ s t,k I 
[
Q t+1 ,k = Q 

max 
k − D t,k 

��Y t,k , τt,k , p t,k 
]} 

×
∏
k ∈K 

{ 
I 
[
(Q t,k − D t,k )+ = 0 

]
I 
[
A 

d 
t+1 ,k = min { A 

s 
t,k + 1 , A max } 

]
+ I 

[
(Q t,k − D t,k )+ � 0 

]
I 
[
A 

d 
t+1 ,k = min { A 

d 
t,k + 1 , A max } 

]} 
(16)

Definition 1 (System State). At the beginning of the t th frame, the global system state is uniquely

pecified by a tuple S t � (L 

o 
t , Y t , Q t , A 

s 
t , A 

d 
t ), where L 

o 
t is the set of location indices of all the

obile blockers, Y t � {Y t,k } k ∈K is the set of baseband gains of all sensors, Q t � {Q t,k } k ∈K is the

et of uplink queue lengths, A 

s 
t � {A 

s 
t,k 
} k ∈K is the set of AoIs at the sensors, and A 

d 
t � {A 

d 
t,k 
} k ∈K 

s the set of AoIs at the server. Moreover, the local system state of the kth sensor in the t th frame

s defined by S t,k � (L 

o 
t , Y t,k , Q t,k , A 

s 
t,k 
, A 

d 
t,k 
). 

Definition 2 (Action and Policy). The local scheduling action of the kth sensor, including the

ampling decision, the uplink transmission time and power, is defined as a t,k � (s t,k , τt,k , p t,k ).
 We assume that the AoI is upper bounded by A max as in [ 41 , 42 ]. This is because, for time-critical applications, it is 

eaningless for the server to receive significantly outdated status information from the sensors. Thus, the AoIs exceeding 

 threshold are equally bad for the server. Moreover, for tractability, A max is finite but can be arbitrarily large. 
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he global scheduling action is defined as the aggregation of the local actions of all the sensors;

hus, a t � {a t,k } k ∈K . Hence, the scheduling policy, denoted as Ω, is a mapping from the system

tate S t to the scheduling action, i.e., Ω(S t ) = a t . 

Hence, given the scheduling policy Ω, the state transition probability can be written as in ( 16 ).

oreover, in the t th frame, the per-frame cost is defined as the weighted sum of AoIs at the server

or all sensors, energy consumption of sampling and uplink transmission, and outdated AoI penal-

ies at the server for all sensors. That is, 

д(S t , Ω(S t )) = 
∑
k ∈K 

[ 
A 

d 
t,k +w P (s t,k C 

s + τt,k p t,k ) +w Q 

I 
[
A 

d 
t,k = A max 

] ] 
, (17)

here w P and w Q 

denote the weights for energy consumption and AoI outdatedness penalty, re-

pectively. Note that the first and third terms of ( 17 ) imply a nonlinear cost function of AoI [ 27 ].

ence, the overall average cost from the 1-st frame is defined as 

G (S 1 , Ω) � lim 

T →∞ 

[
E Y ,L o 

T ∑
t= 1 

γ t−1 д t (S t , Ω(S t ))
����S 1 ] , (18)

here γ ∈ (0 , 1 ) is the discount factor, and the expectation is taken on Y � {Y 1 , Y 2 , . . . , Y T } and

 

o � {L 

o 
1 , L 

o 
2 , . . . , L 

o 
T 
}. As a result, the joint sampling and uploading optimization can be formu-

ated as the following infinite-horizon MDP with discounted cost. 

P1 : Ω� = arg min 

Ω
G (S 1 , Ω) (19a)

s . t . Constraints in ( 7 ), ( 11 ), ( 12 ) . (19b)

he Bellman’s equations of the above MDP are 

W (S) = min 

Ω(S)

[ 
д 
(
S, Ω(S)

)
+ γ

∑
S ′ 

W (S ′ ) Pr 
[
S ′ 

��S, Ω(S)] ] , ∀ S, (20)

here W (·) is the value function of the optimal scheduling policy (i.e., the optimal value function),

nd S ′ is the system state in the next frame given system state S and scheduling action Ω(S).
oreover, the policy minimizing the right-hand-side ( RHS ) of the above Bellman’s equations is

ptimal [ 4 ]. 

Note that the baseband gain in the system state is continuously and independently distributed

n all frames, which can be eliminated from the value function to reduce the complexity. We

rst define the local and global abstract state [ 14 ] with the baseband gain eliminated, i.e., ˜ S t,k �
L 

o 
t , Q t,k , A 

s 
t,k 
, A 

d 
t,k 
) and 

˜ S t � (L 

o 
t , Q t , A 

s 
t , A 

d 
t ). By taking expectation on both sides of ( 20 ), the

ellman’s equations with respect to the abstract state can be simplified as 

W (˜ S ) = E Y min 

Ω(S)

[
д 
(
S , Ω(S )

)
+ γ

∑
˜ S ′ W (˜ S ′ ) Pr 

[ ˜ S ′ 
��S , Ω(S )] ] , ∀ ̃

 S , (21)

here ˜ S ′ is the abstract state in the next frame. The optimal value function with respect to the

bstract state can be represented as follows: 
CM Trans. Sen. Netw., Vol. 20, No. 6, Article 119. Publication date: November 2024. 
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W (˜ S ) = E Y W (S) = min 

Ω
lim 

T →∞ 

T ∑
t= 1 

E 

Ω
Y ,L o γ

t−1 
[ 
д 
(
S t , Ω(S t )

) ��� ˜ S 1 = ˜ S 
] 
, ∀ ̃

 S . (22)

ith the value function of the optimal policy and the current system state S t , the optimal action

n the t th frame is given by 

Ω� (S t ) = arg min 

Ω(S t )

[
д t 

(
S t , Ω(S t )

)
+ γ

∑
˜ S t+1 

W (˜ S t+1 ) Pr 
[ ˜ S t+1 

��S t , Ω(S t )] ] , ∀ t , ∀ S t . (23)

Although conventional approaches such as value iteration algorithm ( VIA ) can be used to

nd the optimal scheduling policy [ 4 ], they suffer from the curse of dimensionality : due to the huge

ystem state space, the evaluation of {W (˜ S t )|∀ ̃

 S t } is prohibitive. In the following section, we shall

ropose a low-complexity scheduling scheme to address this issue. 

 Low-Complexity Scheduling 

n this section, COSMO, a low-complexity scheduling scheme with non-trivial analytical perfor-

ance bound is proposed. COSMO includes two stages. Particularly, 

—in Section 5.1 , an offline procedure for value function approximation is introduced. 3 We

design a heuristic scheduling policy as the reference policy, whose value function (average

discounted cost) can be analytically expressed; 

—in Section 5.2 , the online stage for per-frame scheduling is introduced. By approximating

the optimal value function via the above-derived value function, the scheduling action of

each frame can be obtained by solving the optimization problem in ( 23 ). As a result, the sto-

chastic policy optimization in Problem P1 is decomposed into a deterministic optimization

problem for each frame. Then we propose an alternative optimization (AO) algorithm

to derive the suboptimal solution of the deterministic optimization problems; 

—in Section 5.3 , we analyze the performance bound and time complexity of COSMO. 

.1 Decoupled Reference Policy 

 heuristic reference policy is proposed to provide an expression of an achievable average dis-

ounted cost in this part. In fact, given the policy, the system evolves as a Markov chain, whose

ost can be derived via the transition matrix. However, the dimension of the transition matrix

rows exponentially with respect to the number of sensors, which makes the above approach in-

easible. In order to address this issue, in the reference policy, the transmission time allocation of

he K sensors is fixed. Hence, the state transition of the whole network can be decoupled into K
ime-invariant Markov chains with significantly smaller state space for the K sensors respectively.

pecifically, We adopt the following decoupled policy as the reference policy 

4 : 

Policy 1 (Decoupled Reference Policy Π). The reference policy, denoted as Π � (s Π
t,k 
, τΠ

t,k 
, p Π

t,k 
),

s elaborated below. 
 This offline procedure is required to be conducted only once before a large brunch of scheduling frames as long as the 

eflectors are static. However, the reflector dynamics can be easily detected by periodic environmental reconstruction 

ia wireless sensing techniques [ 28 ], and then the parameters of the channel model shall be renewed for the update of 

pproximate value functions. 
 In fact, the reference policy is not required to be specified as the particular policy in this work and can be any policy 

s long as its value function can be analytically expressed. In this work, for elaboration convenience, we specified the 

eference policy with fixed transmission time and power allocation. 
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—The sampling decision is made when the uplink queue is empty, i.e., s Π
t,k 
= I[Q t,k = 0 ]. 

—The transmission time allocation is proportional to the data volume of corresponding

sampling, i.e., 

τΠ
t,k = T F 

Q 

max 
k ∑

k ′ ∈K Q 

max 
k ′ 
. (24)

—The transmission power is constant, i.e., p Π
t,k 
= P Π . 

With the reference policy Π, the average discounted cost of each sensor can be calculated accord-

ng to the transition matrices of their local abstract states, respectively. Note that the space of the

ocal abstract state of the kth sensor, denoted as ˜ S t,k = (L 

o 
t , Q t,k , A 

s 
t,k 
, A 

d 
t,k 
), is with a cardinality

f L 

B (Q 

max 
k 
+ 1 )A 

2 
max . We can use the vector s t,k ∈ R 

L B (Q 

max 
k 
+1 )A 

2 
max ×1 to represent the distribution

f local abstract state of kth sensor in the t th frame. The κ
(
ς(L 

o 
t ), ϵ(Q t,k , A 

s 
t,k 
, A 

d 
t,k 
)
)
-th entry of

 t,k denotes the probability of the local abstract state ˜ S t,k = (L 

o 
t , Q t,k , A 

s 
t,k 
, A 

d 
t,k 
) in the t th frame,

here 

κ(ς , ϵ) � (ς − 1 )
(
Q 

max 
k + 1 

)
A 

2 
max + ϵ, (25)

ς(L 

o 
t ) � 

∑
b ∈B 

l o t,b L 

B−b , (26)

nd 

ϵ
(
Q t,k , A 

s 
t,k , A 

d 
t,k 

)
� Q t,k A 

2 
max +

(
A 

s 
t,k − 1 

)
A max +A 

d 
t,k . (27)

s a result, the time-invariant transition probability matrix of the local abstract state of the kth

ensor P k ∈ R 

L B (Q 

max 
k 
+1 )A 

2 
max ×L B (Q 

max 
k 
+1 )A 

2 
max satisfies 

s t+1 ,k = P 

T 
k s t,k = 

(
P 

T 
k 

)t 

s 1 ,k . (28)

n order to derive the expression of P k , we first introduce the following lemma on the distribution

f departure packet number. 

Lemma 1. With sufficiently large N R and N T , given the reference policy Π and the blocker’s location

 

o 
t , the optimal solution of ( 10 ) can be determined by (w t,k , f t,k ) = (a R (Φk,i � ), a T (Θk,i � )), and the

robability mass function ( PMF ) of departure packet number can be written by ( 29 ), where i � =
 

� (k, L 

o 
t ) = arg max i I 

o 
t, k, i 
(L 

o 
t )ρ−1 

k,i 
. 

Proof. Please refer to Appendix A . �

With Lemma 1 , the complicated precoder and combiner optimization in ( 10 ) can be solved by se-

ecting the best one among the (M + 1 ) propagation paths. The distribution of packet departure can

e determined accordingly. As a result, we have the following lemma on the transition matrix P k .

Lemma 2. With sufficiently large N R and N T , given the reference policy Π, the transition probability

atrix of local abstract state of the kth sensor is given by ( 30 ), where M 

(�)
k 
∈ R 

(Q 

max 
k 
+1 )A 

2 
max ×(Q 

max 
k 
+1 )A 

2 
max 

s given by Table 2 , P 

o � P 

o 
1 ⊗ P 

o 
2 ⊗ · · · ⊗ P 

o 
B 
∈ R 

L B ×L B , and P 

o 
b 

is defined in ( 1 ). 

Proof. Please refer to Appendix B . �
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Table 2. Non-Zero Entries of Matrix M 

(�)
k 

Q t,k A 

s 
t,k 

A 

d 
t,k 

Q t+1 ,k A 

s 
t+1 ,k 

A 

d 
t+1 ,k 

[ 
M 

(�)
k 

] 
ϵ (Q t,k ,A s t,k ,A 

d 
t,k 
),ϵ (Q t+1 ,k ,A 

s 
t+1 ,k 

,A d 
t+1 ,k 

)

0 1 , . . . , A max 1 , . . . , A max 0 1 1 Pr 
[ 
D 

Π
t,k 
≥ Q 

max 
k 

���ς (L o t ) = � 
] 

0 1 , . . . , A max 1 , . . . , A max 1 , . . . , Q 

max 
k 

1 min { A 

d 
t,k 
+1 , A max } Pr 

[ 
D 

Π
t,k 
= Q 

max 
k 
−Q t+1 ,k 

���ς (L o t ) = � 
] 

1 , . . . , Q 

max 
k 

1 , . . . , A max 1 , . . . , A max 0 min { A 

s 
t,k 
+1 , A max } min { A 

s 
t,k 
+1 , A max } Pr 

[ 
D 

Π
t,k 
≥ Q t,k 

���ς (L o t ) = � 
] 

1 , . . . , Q 

max 
k 

1 , . . . , A max 1 , . . . , A max 1 , . . . , Q t,k min { A 

s 
t,k 
+1 , A max } min { A 

d 
t,k 
+1 , A max } Pr 

[ 
D 

Π
t,k 
= Q t,k −Q t+1 ,k 

���ς (L o t ) = � 
] 
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t  
Pr 
[ 
D 

Π
t,k = d 

���L 

o 
t 

] 
= exp 

( 
−
ρk,i � N 0 W 

P Π

(
2 

d N b 

W τ Π
t,k − 1 

)) 
− exp 

( 
−
ρk,i � N 0 W 

P Π

(
2 

(d+1 )N b 

W τ Π
t,k − 1 

)) 
, (29)

P k = 

�������
[P 

o ]1 ,1 M 

(1 )
k 

[P 

o ]1 ,2 M 

(1 )
k 

· · · [P 

o ]1 ,L B M 

(1 )
k 

[P 

o ]2 ,1 M 

(2 )
k 

[P 

o ]2 ,2 M 

(2 )
k 

· · · [P 

o ]2 ,L B M 

(2 )
k 

. . . 
. . . 

. . . 
. . . 

[P 

o ]L B ,1 M 

(L B )
k 

[P 

o ]L B ,2 M 

(L B )
k 

· · · [P 

o ]L B ,L B M 

(L B )
k 

�     !
, (30)

Finally, the value function of the reference policy (referred to as the approximate value func-

ion), representing the average discounted cost with the reference policy, is given by the following

heorem. 

Theorem 1 (Value Function of Reference Policy Π). With the reference policy Π, the approx-

mate value function is given by 

W 

Π(˜ S t ) = 
∑
k ∈K 

(
e 

L B (Q 

max 
k 
+1 )A 

2 
max 

κ
(
ς (L o t ), ϵ (Q t,k , A 

s 
t,k 

, A 

d 
t,k 
)
) )T 

[I − γP k ]−1 g k ︸� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ︷︷� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ︸ 

� W 

Π
k 
( ˜ S t,k )

+
1 

1 − γ w P T F P 
Π, (31)

here e N 

n denotes an N × 1 column vector whose nth element is 1 and 0 otherwise, g k ∈
 

L B (Q 

max 
k 
+1 )A 

2 
max ×1 is the cost vector for all abstract local state at the kth sensor, and W 

Π
k 
(˜ S t,k is the

pproximate local value function. Specifically, 

[g k ]κ
(
ς (L o t ), ϵ (Q t,k , A 

s 
t,k 

, A 

d 
t,k 
)
) � A 

d 
t,k + I[Q t,k = 0 ]w P C 

s + I[A 

d 
t,k = A max ]w Q 

. (32)

Proof. Please refer to Appendix C . �

As a result, the approximate value function can be evaluated in a distributed and offline manner.

he procedure to calculate the approximate local value function W 

Π
k 
(˜ S t,k ) (∀ ̃

 S t,k ) at each sensor

say the kth sensor) is summarized in Algorithm 1 . 

.2 Scheduling with Approximate Value Function 

ubstituting the optimal value function W (˜ S t+1 ) of the problem in ( 23 ) with the approximate value

unction W 

Π(˜ S t+1 ), the proposed scheduling policy in one frame (say the t th frame) given the

lobal system state S t can be obtained from the following optimization problem. In other words,

he complicated policy optimization in Problem P1 is decomposed into the following deterministic
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ALGORITHM 1 : Evaluation of approximate local value function at the k-th sensor 

Output: 

W 

Π
k 
(˜ S t,k ) (∀ ̃  S t,k ): Approximate local value function 

1 Compute i � (k, L 

o 
t ) via Lemma 1 . 

2 Compute P k via Lemma 2 . 

3 Compute W 

Π
k 
(˜ S t,k ) (∀ ̃  S t,k ) via its definition in Theorem 1 . 

4 return W 

Π
k 
(˜ S t,k ) (∀ ̃  S t,k )

o

 

 

 

p  

A  

u  

a  

t

 

{  

t  

p  

e

 

a  

A  

n

i

 

 

N  

t  

A

ptimization problem at the beginning of each frame. 

P2 : 
{ 
(s � t,k , τ

� 
t,k , p 

� 
t,k )

} 
k ∈K 
= arg min {
(s t,k ,τt,k ,p t,k )

}
k∈K 

∑
k ∈K 

w P (τt,k p t,k + s t,k C 

s )

+ γ
∑
˜ S t+1 

W 

Π(˜ S t+1 ) Pr 
[ ˜ S t+1 

���S t , (s t,k , τt,k , p t,k )k ∈K 
] 
, (33)

s . t . Constraints in ( 7 ), ( 11 ), ( 12 ) . (34)

Remark 3 (Predictive Scheduling). Note that the LoS path is usually much better than the NLoS

aths. If the LoS path of one sensor (say the kth sensor) might be blocked soon, the penalty of

oI outdatedness will be easily triggered. Thus, its local value function W 

Π
k 
(˜ S t,k ) could be large

nless more transmission resources are scheduled to this sensor such that its AoI is maintained at

 low level. As a result, the prediction of future path blockage is considered in the scheduling of

he current frame. 

Problem P2 is a mixed continuous and discrete optimization problem with coupled variables

 s t,k } k ∈K , { τt,k } k ∈K and { p t,k } k ∈K . An AO algorithm [ 32 ] is proposed in Algorithm 2 to obtain

he suboptimal solution in each frame (say the t th frame). Let d t,k be the number of transmission

ackets from the kth sensor in the t th frame, the optimizations of {d t,k } k ∈K and {d (n)
t,k 
} k ∈K are

quivalent. Hence, we optimize {s t,k } k ∈K , {τt,k } k ∈K and {d t,k } k ∈K alternatively in Algorithm 2 . 

Particularly, let { s (n)
t,k 
} k ∈K , { τ (n)t,k 

} k ∈K and {d (n)
t,k 
} k ∈K be the correspondingly optimized vari-

bles in the nth iteration, respectively. Initializing them with the reference policy Π (Line 1 of

lgorithm 2 ), i.e., (s (0 )
t,k 
, τ (0 )

t,k 
, d (0 )

t,k 
) = (s Π

t,k 
, τΠ

t,k 
, d Π

t,k 
), the entire procedure of solving P2 consists of a

umber of iterations. In the nth iteration, the sub-problems P2 . 1 (n, k), P2 . 2 (n, k ), ∀ k , and P2 . 3 (n)
n ( 37 ), ( 38 ) and ( 39 ) are solved respectively (Lines 5 , 7 , 8 ), where 

p t,k 
(
d t,k 

)
= 

1 

Y t,k 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 2 ∧ ���
d t,k N b 

τ (n−1 )
t,k 

W 

� ! − 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , (35)

p t,k (τt,k ) = 
1 

Y t,k 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 2 ∧ ���
d (n)

t,k 
N b 

τt,k W 

� ! − 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . (36)

otice that the originally coupled sampling decision s (n)
t,k 

and transmission packet number alloca-

ion d (n)
t,k 

of all sensors are decoupled given the transmission time allocation {τ (n)
t,k 
} k ∈K , thus the
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ALGORITHM 2 : Online scheduling via AO algorithm. 

Input: 

S t : System state in the t th frame 

{W 

Π
k 
(˜ S t,k )} ∀ k,  ̃  S t,k 

: Approximate local value functions via Algorithm 1 . 

Output: 

Ψ∞ (S t ): Converged action in the t th frame. 

1 n ← 0 , s 
(0 )
t,k 
← s Π

t,k 
, τ
(0 )
t,k 
← τΠ

t,k 
, d 
(0 )
t,k 
← d Π

t,k 
. 

2 while not converge do 

3 n ← n + 1 

4 for k ∈ K do in parallel 

5 Solve s 
(n)
t,k 

in P2 . 1 (n, k) via comparison. 

6 for k ∈ K do in parallel 

7 Solve d 
(n)
t,k 

in P2 . 2 (n, k) via one-dimensional search. 

8 Solve {τ (n)
t,k 
} k ∈K in P2 . 3 (n) via Lemma 3 . 

9 p 
(n)
t,k 
= 1 

Y t,k 

[ 
2 ∧ 

( d 
(n)
t,k 

N b 

τ
(n)
t,k 

W 

)
− 1 

] 
, ∀ k 

10 return Ψ∞ (S t ) ← {(s ∞ 

t,k 
, τ∞ 

t,k 
, p ∞ 

t,k 
)} k ∈K 

c

 

 

 

 

 

 

 

T  

f  

S  
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M  

t

omplexity is significantly reduced. 

P2 . 1 (n, k) : s (n)
t,k 
= arg min 

s t,k ∈{ 0 , 1 } 
w P s t,k C 

s + γ
∑
˜ S t+1 ,k 

W 

Π
k (˜ S t+1 ,k ) Pr 

[ ˜ S t+1 ,k 

���S t,k , (s t,k , τ (n−1 )
t,k 
, p (n−1 )

t,k 
)
] 
, 

(37)

P2 . 2 (n, k ) : d (n)
t,k 
= arg min 

d t,k 

w P τ
(n−1 )
t,k 

p t,k (d t,k )

+ γ
∑
˜ S t+1 ,k 

W 

Π
k (˜ S t+1 ,k ) Pr 

[ ˜ S t+1 ,k 

���S t,k , (s (n)t,k 
, τ (n−1 )

t,k 
, p t,k (d t,k )

)] 
(38a)

s . t . p t,k (d t,k ) ≤ P max (38b)

P2 . 3 (n) : 
{ 
τ (n)

t,k 

} 
k ∈K 
= arg min 

{ τt,k } k∈K 

∑
k ∈K 

τt,k p t,k (τt,k ) (39a)

s . t . 
∑
k ∈K 

τt,k = T F , (39b)

0 ≤ τt,k ≤ T F , ∀ k ∈ K, (39c)

p t,k (τt,k ) ≤ P max , ∀ k ∈ K (39d)

he optimal solution of P2 . 1 (n, k), ∀ k can be derived by evaluating the binary local sampling action

or s t,k = 0 and s t,k = 1 and choosing the one with the smaller value of the objective function.

imilarly, the optimal solution of P2 . 2 (n, k), ∀ k can be solved by one-dimensional search over d t,k ∈
0 , 1 , . . . , Q t,k }. 
oreover, P2 . 3 (n) is a convex optimization problem and the optimal solution can be derived by

he following lemma. 
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Lemma 3. The optimal solution of P2 . 3 (n) is given by 

τ (n)
t,k 
= 
d t,k N b 

W 

max 

{ 

ln 2 

1 +W 0 

(Y t,k ν� −1 

e 

) , 1 

log 2 (1 + P max Y t,k )

} 

, (40)

here W 0 (·) denotes the principal branch of the Lambert W function, and ν� denotes the optimal

agrangian multiplier for the equality constraint ( 11 ) which can be solved by ∑
k ∈K 

d t,k N b 

W 

max 

{ 

ln 2 

1 +W 0 

(Y t,k ν� −1 

e 

) , 1 

log 2 (1 + P max Y t,k )

} 

−T F = 0 . (41)

Proof. Please refer to Appendix D . �

Because the left-hand-side ( LHS ) of ( 41 ) is non-increasing, the bisection method can be used

o solve ν� . Finally, given d (n)
t,k 

and τ (n)
t,k 

, the transmission power allocation in the nth iteration,

enoted by p (n)
t,k 

, can be derived analytically. 

Since the iterative optimization of the sub-problems P2 . 1 (n, k), P2 . 2 (n, k ), ∀ k , and P2 . 3 (n)would

ead to a non-increasing value of the objective function in P2 , the above iteration will always

onverge (Line 10 ). In summary, the overall procedure of COSMO is described in Algorithm 3 . 

LGORITHM 3 : COSMO 

1 Stage 1: Offline Evaluation of Approximate Value Functions 

2 At each sensor (say the kth sensor): 

3 Each sensor evaluates its approximate local value function W 

Π
k 
(˜ S t,k ) (∀ ̃  S t,k ) via Algorithm 1 and 

reports the results to the server. 

4 Stage 2: Centralized Online Scheduling 

5 At the beginning of each frame (say the tth frame): 

6 The server collects the real-time locations of the mobile blockers L 

o 
t via wireless sensing and 

baseband gains Y t via channel estimation. 

7 The server calculates the proposed policy in the t th frame Ψ∞ (S t ) via Algorithm 2 and broadcasts 

the policy to the sensors. 

8 The sensors conduct status sampling and uplink transmission according to Ψ∞ (S t ). 

.3 Performance Bound and Complexity Analysis 

he analytical performance bound and complexity analysis are provided in this part. Denote 

Ψ(n) : ˜ S t → 

{
s (n)

t,k 
, τ (n)

t,k 
, p (n)

t,k 

}
k ∈K , 

s the scheduling policy obtained after n iterations of Algorithm 2 , ˜ W 

Ψ(n) (˜ S t ), 

s the corresponding value functions, and 

Ψ∞ : ˜ S t → 

{
s ∞ 

t,k , τ
∞ 

t,k , p 
∞ 

t,k 

}
k ∈K , 

s the scheduling policy after convergence. The performance of Ψ∞ and Ψ(n) can be bounded as

laborated in the following lemma. 
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Lemma 4 (Performance Bound). The average discounted cost of policies Ψ(n) and Ψ∞ can be

ounded by 

W (˜ S t ) ≤W 

Ψ∞ (˜ S t ) ≤ · · · ≤ ˜ W 

Ψ(n) (˜ S t ) ≤ · · · ≤ ˜ W 

Ψ(1 ) (˜ S t ) ≤W 

Π(˜ S t ). (42)

Proof. Since W (˜ S t ) is the optimal value function, it is the lower bound of the value function of

n arbitrary policy. The proof of W 

Ψ∞ (˜ S t ) ≤ · · · ≤ ˜ W 

Ψ(n) (˜ S t ) ≤ · · · ≤ ˜ W 

Ψ(1 ) (˜ S t ) and 

˜ W 

Ψ(1 ) (˜ S t ) ≤
 

Π(˜ S t ) resembles the proof of the policy improvement property in Chapter II of [ 4 ]. �

As shown in Algorithm 3 , the procedure of COSMO consists of two stages: the evaluation

f the approximate local value functions (Stage 1) and the online scheduling (Stage 2). On one

and, the computational complexity of Stage 1 is O[L 

4 B A 

8 
max 

∑
k ∈K (Q 

max 
k 
)4 ], which grows lin-

arly with the number of sensors K . Note that the computation of Stage 1 can be distributed to

he sensors, the computational complexity per sensor in Stage 1 will not scale with K . On the

ther hand, the computational complexity of per-frame optimization in Stage 2 (Algorithm 2 ) is

[N 

AO 

iter 
L 

B A 

2 
max 

∑
k ∈K (Q 

max 
k 
)2 ], where N 

AO 

iter 
denotes the number of iterations in Algorithm 2 . Based

n the fact that the convergence of AO in Algorithm 2 only requires a few iterations (as demon-

trated by our numerical simulations in the next section), thus N 

AO 

iter 
is small, the most computation-

ntensive part of COSMO lies in Stage 1. 

As a comparison, VIA is requested in the conventional solution of MDP. For VIA with τD 

and p D
evels of transmission time and power respectively, the computation complexity is O 

(
N 

VIA 

iter 
| ̃  S | 2 | A | 

)
,

here N 

VIA 

iter 
denotes the number of iterations in the VIA, | ̃  S | � L 

B A 

2 K 

max 

∏
k ∈K Q 

max 
k 

and |A | �
 

K τK 

D 

p K 

D 

denote the cardinalities of the abstract state space and action space, respectively. It can be

bserved that the computation complexity of VIA grows exponentially with the number of sen-

ors K , which makes the computation of the optimal value function prohibitive. Thus, benefiting

rom the analytical approximation of the optimal value functions in COSMO, the computation

omplexity is essentially reduced. 

 Simulations and Discussions 

n this section, the performance of COSMO is demonstrated via simulations, where a number of

enchmarks are used in the comparison. We summarize the key findings of our simulations as

ollows: 

—COSMO can converge after only a few iterations and reduce the average per-frame cost by

19 . 5% –52 . 7% compared with the benchmarks. 

—COSMO can proactively keep the AoIs of sensors with future channel degradation at a low

level in example traces, which intuitively verifies the benefits of exploiting mobile blocker

detection in AoI-oriented scheduling design. 

—COSMO shows better performance compared to the benchmarks with robustness under a

variety of configurations. 

.1 Simulation Setup 

s illustrated in Figure 2 , we consider a 20m × 20m square room with walls serving as the reflec-

ors of the NLoS paths ( M = 4 ), where the BS is deployed at the center block of the room and the

ocations of sensors are uniformly distributed near the walls. The mobility of the human blockers

ith radius r B = 0 . 3 m follows a modified random walk. The probability of staying in the same grid

n the next frame is 0.90, while the probability of moving to one of the feasible neighboring blocks

s based on the probability distribution of human locations in a room which can be calculated by
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Fig. 2. Simulation scenario and an illustrative trajectory of the blocker in scenario of single blocker. 

Table 3. Parameter Configuration of the Simulation 

Parameter Symbol Value 

Carrier frequency f c 60.48 GHz 

Number of sensors K 8 

Number of blockers B 1 

Number of receive/transmit antenna elements N R , N T 128,64 [ 3 ] 

Path loss ρk,i 
LoS: 32 .5 + 20 log (f c ) + 20 log (R) [ 18 ] 

NLoS: 32 .5 + 20 log (f c ) + 20 log (R) + 15 [ 34 ] 

Number of possible locations of the blocker L 48 

Bandwidth W 

400 MHz [ 37 ] 

Frame duration T F 10 ms [ 29 ] 

Packet size N b 200 KB 

Noise power spectral density N 0 -174 dBm/Hz [ 37 ] 

Data volume Q 

max 
k 

U(3 , 4 )
Threshold for outdated AoI A max 10 

Maximum transmission power P max 100 mW [ 2 ] 

Discount factor γ 0.98 

Weights for energy consumption w P 10000 

Weights for outdated AoI penalty w Q 15 

Sampling energy consumption C 

s 2 × 10 −4 J 

Transmission power of reference policy P 

Π 20 mW 

w  

b  

h  

i  

a  

s

 

Ψ  

A

ireless localization techniques such as [ 28 ]. To generate a practical location probability distri-

ution and trajectories of human blockers, we use the OMNI1 dataset [ 19 ] which includes 1,600

uman trajectories through a lab captured by an omni-directional camera. The location probabil-

ty distribution is illustrated in Figure 2 where the colors indicate the probability of each grid and

n illustrative blocker trajectory generated from it is shown by the arrows. Other parameters are

ummarized in Table 3 . 

We evaluate COSMO with different numbers of AO iterations in solving P2 , namely, Ψ(1 ), Ψ(2 ),
(3 ), Ψ∞ , and compare them with the following three benchmark policies, which are referred to as
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Fig. 3. An AoI trial of the 6-th sensor. 
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4  
EF, DBP and LAF, respectively. All the benchmarks adopt the same sampling policy and trans-

ission power allocation as the reference policy, i.e., s t,k = I[Q t,k = 0 ] and p t,k = P 
Π , while the

ransmission time allocation is elaborated as follows: 

Benchmark 1 (Reference Policy, REF). The transmission time allocation of each sensor

s proportional to the corresponding data volume of the sample at each sensor, i.e., τt,k =

 F Q 

max 
k 
/
∑

k ′ ∈K Q 

max 
k ′ 

. 

Benchmark 2 (Dynamic Backpressure [ 8 ], DBP). The sensor with the largest product of buffer

ength and uplink capacity, i.e., arg max k Q t,k R t,k , is scheduled for transmission sequentially until

he transmission time of the frame is used up. 

Benchmark 3 (Largest-AoI First, LAF). The sensor with the largest AoI at the server, i.e.,

rg max k A 

d 
t,k 

, is scheduled for transmission sequentially until the transmission time of the frame

s used up. 

.2 Simulation Results 

he insights on blockage-prediction-based scheduling of COSMO can be obtained in Figure 3 ,

hich shows a trial of the AoIs at the 6-th sensor and the server. The corresponding trajectory

s illustrated in Figure 2 , where the time indexes indicate the frames when the blocker moves to

he grids. For example, the blocker remains in position A since the 1-st frame and moves left to

osition B in the 9-th frame. In this trajectory, the LoS path between the BS and the 6-th sensor is

locked when the blocker is located at the position E from the 45-th frame to the 55-th frame. In this

eriod, only the NLoS paths are available for sample uploading at the 6-th sensor. The REF policy

annot detect such channel degradation, hence the samples are uploaded at a constant frequency.

ith COSMO, when the blocker is at positions B, C and D, the samples from the 6-th sensor are

ploaded with higher frequencies (3, 2, and 2 frames per uploading), resulting in an average AoIs

f 3, 2.5, and 2 frames, respectively. Thus, as the blocker moves closer to the LoS path between the

ensor and the server, the COSMO will give a higher priority of sample uploading to the sensor,

uch that the penalty of AoI outage at the server can be suppressed. This can be observed from

igure 3 . 

Figure 4 (a) displays the cumulative distribution functions ( CDFs ) of the per-frame cost of

OSMO with the different numbers of AO iterations ( n = 1 , 2 , 3 , ∞ ) as well as the three bench-

arks, where the number of sensors is K = 8 . The average per-frame costs of COSMO with

he number of AO iterations n = 1 , 2 , 3 , ∞ are 171.3, 139.2, 133.7 and 133.2, respectively, while

hose for the three benchmarks, i.e., REF, DBP and LAF, are 282.0, 165.4 and 255.3, respectively.

he cost reductions of the converged COSMO ( Ψ∞ ) over the benchmarks are 52 . 7% , 19 . 5% , and

7 . 8% , respectively, indicating the average gain performance of COSMO. Notice that COSMO can
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Fig. 4. (a) CDF of the per-frame cost. (b) Average performance of the AoI at the server, sampling energy, 

transmission energy, and outdated AoI penalty. 
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ignificantly reduce the average per-frame cost of the REF scheme by 39 . 2% with only one-step AO

teration, and it converges in only a few AO iterations. This indicates the efficiency of the proposed

nline scheduling via AO algorithm. 

Figure 4 (b) sketches the bar chart of the four components of per-frame cost. REF has the largest

enalty on AoI outdatedness, because its scheduling is independent of the system state. DBP has

he highest sampling energy consumption indicating its highest sampling frequency. This is be-

ause it tends to select the sensor with high throughput. Although LAF always prioritizes the

ensors with the largest AoIs at the server in per-frame scheduling, it fails to reduce the average

enalty on AoI outdatedness in the long run, due to its obliviousness to channel variation. On the

ther hand, COSMO achieves the best balance between AoI and energy consumption. 

.3 Sensitivity Analysis 

e further investigate the impact of the number of sensors K , the number of blockers B, sampling

nergy consumption C 

s , as well as the weights for energy consumption and AoI outdatedness

enalty w P and w Q 

. 

Impact of the Number of Blockers. The impact of the number of blockers B on average

er-frame cost is shown in Figure 5 . As the number of blockers increases, the average per-frame

ost of the policies increases because the LoS path of each sensor will suffer a higher probability

f blockage. COSMO overperforms the benchmarks at both the circumstances with or without

obile blockers which shows its robustness to both static and dynamic environments. 

Impact of the Number of Sensors. The average per-frame cost versus the number of sensors K
s studied in Figure 6 . The average per-frame cost of COSMO is always lower than the benchmarks,

hich verifies the better performance of COSMO and its scalability to the number of sensors. 

Impact of Sampling Energy Consumption. The average per-frame cost versus the sampling

nergy consumption C 

s is shown in Figure 7 . Note that C 

s = 0 corresponds to the scenario that

ither sampling at the sensor consumes negligible energy or the sensors are sampling in real-time

nd the server needs to determine whether to refresh the buffer with the latest status information.

OSMO has the lowest average per-frame cost which implies that it is adaptive to various types

f sensors. 

Impact of Weights in Cost Function. Because the demands for energy consumption and

nformation freshness/outdatedness may vary across different monitoring applications. We also

nvestigate the impact of the two weights for energy consumption and AoI outdatedness penalty
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Fig. 5. Average per-frame cost versus the num- 

ber of blockers. 

Fig. 6. Average per-frame cost versus the num- 

ber of sensors. 

Fig. 7. Average per-frame cost versus sampling energy cost. 
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n the cost function, i.e., w P and w Q 

. As illustrated in Figure 8 , COSMO can always achieve the

owest average per-frame cost with different demands on energy consumption and information

reshness. 

Performance Scalability. In the above sensitivity analysis, the numbers of blockers or sensors

re increased to 3 and 8, respectively. It is expected that when both numbers are even larger, the

erformance gain of COSMO over various benchmarks would become more significant. In fact,

he gain of COSMO comes from the prediction of mmWave link blockage. Intuitively, when a

ink blockage is likely to happen at a sensor in the coming future, it is likely to make a sampling

ecision and upload the sample as fast as possible, such that the risk of AoI outdatedness at the

erver during the link blockage period is suppressed. With more sensors and blockers, there is

enerally a larger chance that COSMO could benefit from such prediction. This is the reason that

n increasing trend of performance gain can be observed in Figure 6 . 

 Discussions 

s an initial attempt to exploit environment sensing and human motion tracking in the AoI-

riented scheduling design, our current design exhibits some limitations that will be addressed

n the future. First, the performance of COSMO depends closely on the reference policy. In fact,

ny policy can be taken as the reference policy as long as its value function can be analytically

xpressed. Hence, it is interesting to investigate the design of reference policy with better perfor-

ance. For example, it is possible to optimize the transmission and sampling parameters of the

urrent reference policy as a new reference policy. 

Second, we consider static sensors in this article. In fact, both sensors and blockers might move

n practice. For example, sensors might be installed on user equipment ( UE ), vehicles or robotic

latforms [ 7 , 12 , 17 , 20 ] in indoor or outdoor scenarios with walking people. In these new scenarios,
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Fig. 8. Average per-frame cost versus the weights for (a) energy consumption and (b) AoI outdatedness 

penalty. 
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ince sensors are moving, their locations as well as the locations of mobile blockers should be

nvolved in the system state. Since both the blockers and other sensors might block the uplink

ransmission of one sensor, the motions of all blockers and sensors are coupled in the transmission

cheduling, leading to huge system state space. As a result, a low-complexity algorithm design

ecomes necessary. 

Finally, COSMO tracks the motion of B blockers in this article. When B increases, the compu-

ational complexity of COSMO grows exponentially. This is because the locations of all blockers

re included in the local system state of each sensor, and the state space grows exponentially with

. Hence, the link blockage model should be revised in order to keep the complexity of COSMO

t a low level. In fact, when B is large, it is not practical to track the trajectories of all the blockers

ndividually. One promising method to model the link blockage is to establish: (1) the relation be-

ween the link blockage probability and the number of mobile blockers in close proximity to the

ink, and (2) a stochastic process describing the dynamics of blockers’ number in each region of

he network. 

 Conclusion 

n this article, we formulate the dynamic scheduling of sampling and uploading in an mmWave-

ased WSN with random human blockage as an infinite-horizon MDP with discounted cost,

here the weighted sum of average AoI and system energy consumption is the minimization

bjective. Since the system state space grows exponentially with respect to the number of sensors,

n approximate MDP solution framework for COSMO is proposed to address the curse of di-

ensionality. In the proposed framework of COSMO, the optimal value function is approximated

y an analytical expression derived from a reference policy. The numerical evaluation of the

alue function in conventional approximate MDP solutions can be eliminated. Finally, the policy

teration based on the analytical value function is significantly more efficient than the lookup-

able-based value function in conventional solution frameworks. Thus, the solution complexity

s significantly reduced. Moreover, the impact of random human blockage on future costs is

redicted in the approximate value function and mitigated in the scheduling of the current frame.

ppendices 

 Proof of Lemma 1 

ccording to [ 24 ], with sufficient large N R and N T , f R (Φ) → 1 and f T (Θ) → 1 if Φ = 0 and Θ = 0 ,
therwise f R (Φ) → 0 and f T (Θ) → 0 , where f R (Φ) = | a H (0 )a R (Φ)| and f T (Θ) = | a H (0 )a T (Θ)| . 
R T 
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Hence, substituting ( 2 ) into ( 10 ), we can derive 

(
w t,k , f t,k 

)
= arg max 

a R (Φq )∈W 

a T (Θp )∈F 

E (αt, k, i )i∈M 

�����∑
i ∈M 

I o t, k, i (L 

o 
t )αt, k, i × f R (Φk,i − Φq )f T (Θp − Θk,i )

�����2 (43)

= arg max 

a R (Φq )∈W 

a T (Θp )∈F 

I o t, k, i (L 

o 
t )ρ−1 

k,i . (44)

hen the analog precoder and combiner selection in ( 44 ) can be degraded into the multipath se-

ection among the (M + 1 ) propagation paths. Let i � = arg max i I 
o 
t, k, i 
(L 

o 
t )ρ−1 

k,i 
, ( 44 ) can be written

y 

(
w t,k , f t,k 

)
= 

(
a R (Φk,i � ), a T (Θk,i � )

)
. Then the baseband gain can be represented by Y t,k (L 

o 
t ) =

αt, k, i � 
��2 /(N 0 W ). 

Given αt, k, i � ∼ C N (0 , ρ−1 
k,i � 
), | αt, k, i � | 2 = � 

2 [αt, k, i � ] + � 

2 [αt, k, i � ] follows an exponential distri-

ution, i.e., | αt, k, i � | 2 ∼ Exp (ρk,i � ). Then Y t,k (L 

o 
t ) ∼ Exp (ρk,i � N 0 W ) and thus the CDF of Y t,k (L 

o 
t )

an be written by 

Pr [Y t,k (L 

o 
t ) ≤ x] = 1 − exp (−ρk,i � N 0 W x). (45)

herefore, the PMF of departure packet number is given by 

Pr 
[
D 

Π
t,k = d 

��L 

o 
t 

]
= Pr 

[
D 

Π
t,k ≤ d + 1 

��L 

o 
t 

]
− Pr 

[
D 

Π
t,k ≤ d 

��L 

o 
t 

]
(46)

= Pr 

[ 
Y t,k (L 

o 
t ) ≤

2 ∧ 
(
(d+1 )N b 

W τ Π
t,k 

)
− 1 

P Π

] 
− Pr 

[ 
Y t,k (L 

o 
t ) ≤

2 ∧ 
(

d N b 

W τ Π
t,k 

)
− 1 

P Π

] 
. (47)

 Proof of Lemma 2 

n fact, M 

(�)
k 

represents the transition probability matrix of local abstract state with L 

o 
t eliminated,

.e., (Q t,k , A 

s 
t,k 
, A 

d 
t,k 
), conditioned on ς(L 

o 
t ) = �. Then the derivation of ( 30 ) is straightforward. We

ave the following discussion on all possible cases for M 

(�)
k 

defined in Table 2 . 

—Case 1 ( Q t,k = 0 , 1 ≤ A 

s 
t,k 
≤ A max , 1 ≤ A 

d 
t,k 
≤ A max , Q t+1 ,k = 0 , A 

s 
t+1 ,k 

= 1 , A 

d 
t+1 ,k 

= 1 ):

This means that sampling and transmission of all packets of the new sample are

accomplished with the probability of Q 

max 
k 

departure packets. 

—Case 2 ( Q t,k = 0 , 1 ≤ A 

s 
t,k 
≤ A max , 1 ≤ A 

d 
t,k 
≤ A max , 1 ≤ Q t+1 ,k ≤ Q 

max 
k 
, A 

s 
t+1 ,k 

= 1 ,

A 

d 
t+1 ,k 

= min { A 

d 
t,k 
+ 1 , A max } ): This means that sampling and transmission of

(Q 

max 
k 
−Q t+1 ,k ) packets of the new sample are accomplished with the probability of

(Q 

max 
k 
−Q t+1 ,k ) departure packets. 

—Case 3 (1 ≤ Q t,k ≤ Q 

max 
k 
, 1 ≤ A 

s 
t,k 
≤ A max , 1 ≤ A 

d 
t,k 
≤ A max , Q t+1 ,k = 0 , A 

s 
t+1 ,k 

= min {
A 

s 
t,k 
+ 1 , A max }, A 

d 
t+1 ,k 

= min {A 

s 
t,k 
+ 1 , A max }): This means that transmission of all re-

maining Q t+1 ,k packets of the current sample is accomplished with the probability of

Q t+1 ,k departure packets. 

—Case 4 (1 ≤ Q t,k ≤ Q 

max 
k 
, 1 ≤ A 

s 
t,k 
≤ A max , 1 ≤ A 

d 
t,k 
≤ A max , 1 ≤ Q t+1 ,k ≤ Q t,k , A 

s 
t+1 ,k 

=

min { A 

s 
t,k 
+ 1 , A max } , A 

d 
t+1 ,k 

= min { A 

d 
t,k 
+ 1 , A max } ): This means that transmission of

(Q t,k −Q t+1 ,k ) packets of the current sample is accomplished with the probability of

(Q t,k −Q t+1 ,k ) departure packets. 
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 Proof of Theorem 1 

he approximate value function is given by 

W 

Π(˜ S t ) = lim 

T →∞ 

T ∑
t= 1 

γ t−1 

[ ∑
k ∈K 

(
e 

L B (Q 

max 
k 
+1 )A 

2 
max 

κ
(
ς (L o t ), ϵ (Q t,k , A 

s 
t,k 

, A 

d 
t,k 
)
) )T 

P 

t−1 
k g k +w P T F P 

Π

] 
. (48)

ince the reference policy adopts constant transmission time and power allocations, the per-frame

ost for transmission power consumption, and thus its discounted cumulative sum corresponding

o the second term in ( 31 ), results in a constant. In fact, e 
L B (Q 

max 
k 
+1 )A 

2 
max 

κ(ς (L o t ), ϵ (Q t,k , A 

s 
t,k 

, A 

d 
t,k 
))

represents the

robability vector for a deterministic local abstract state ˜ S t,k = (L 

o 
t , Q t,k , A 

s 
t,k 
, A 

d 
t,k 
), P k represents

he transition probability matrix, and the κ(ς(L 

o 
t ), ϵ(Q t,k , A 

s 
t,k 
, A 

d 
t,k 
))-th entry of g k represents the

er-frame cost for sampling energy cost, and AoIs and outdated AoI penalties at the server. Since

he reference policy samples only when the queue becomes empty, the per-frame cost for sampling

s counted only for Q t,k = 0 . Therefore, (e L 
B (Q 

max 
k 
+1 )A 

2 
max 

κ(ς (L o t ), ϵ (Q t,k , A 

s 
t,k 

, A 

d 
t,k 
))
)T P 

t−1 
k 

g k r epr esents the expected

er-frame cost in the t-th frame. The derivation from ( 48 ) to ( 31 ) resembles the proof in Appendix

(3) of [ 11 ]. 

 Proof of Lemma 3 

ubstituting p t,k (τt,k ) by ( 36 ), P2 . 3 (n) can be rewritten by 

P2 . 3 (n) : 
{ 
τ (n)

t,k 

} 
k ∈K 
= arg min 

{ τt,k } k∈K 

∑
k ∈K 

τt,k 

Y t,k 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 2 ∧ ���
d (n)

t,k 
N b 

τt,k W 

� ! − 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (49a)

s . t . τ (n)
t,k 
≥

d (n)
t,k 

N b 

W log 2 (1 + P max Y t,k )
, ∀ k ∈ K (49b)∑

k ∈K 
τt,k = T F . (49c)

y introducing Lagrange multipliers μ� 
k 

for inequality constraints ( 49b ) and ν� for equality con-

traint ( 49c ), the Lagrangian is given by 

L 

(
{ τt,k } k ∈K , { μk } k ∈K , ν

)
= 

∑
k ∈K 

τt,k 

Y t,k 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 2 ∧ ���
d (n)

t,k 
N b 

τt,k W 

� ! − 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ −
∑
k ∈K 

μk 
���τt,k −

d (n)
t,k 

N b 

W log 2 (1 + P max Y t,k )
� ! + ν

( ∑
k ∈K 

τt,k −T F 

) 
. (50)

ence, the Karush-Kuhn-Tucker ( KKT ) conditions can be written as follows: 

τ (n)
t,k 
≥

d (n)
t,k 

N b 

W log 2 (1 + P max Y t,k )
, ∀ k ∈ K , (51a)∑

k ∈K 
τ (n)

t,k 
= T F , (51b)

μ� k ≥ 0 , ∀ k ∈ K , (51c)

μ� k τ
(n)
t,k 
= 0 , ∀ k ∈ K , (51d)

∂L 

∂τ (n)
t,k 

= 
1 

Y t,k 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ���1 −
d (n)

t,k 
N b ln 2 

W τ (n)
t,k 

� ! 2 ∧ 
���
d (n)

t,k 
N b 

W τ (n)
t,k 

� ! − 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ − μ� k + ν
� = 0 , ∀ k ∈ K . (51e)
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ince P2 . 3 (n) is a convex problem, by solving the above equations, proof of lemma 3 is straight-

orward. 
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